Page 7 of 8
The Journal of Organic Chemistry
Temperatures through Palladium Catalysis. Angew. Chem. Int.
Ed. 2009, 48, 7612ꢀ7615.
ASSOCIATED CONTENT
Supporting Information
1
2
3
4
5
6
7
8
16. Perkowski, A. J.; Cruz, C. L.; Nicewicz, D. A. Ambientꢀ
Temperature Newman–Kwart Rearrangement Mediated by
Organic Photoredox Catalysis. J. Am. Chem. Soc. 2015, 137,
15684ꢀ15687.
17. LloydꢀJones, G. C.; Moseley, J. D.; Renny, J. S. Mechanism and
Application of the NewmanꢀKwart O→S Rearrangement of Oꢀ
Aryl Thiocarbamates. Synthesis 2008, 2008, 661ꢀ689.
18. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light
Photoredox Catalysis with Transition Metal Complexes:
Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322ꢀ
5363.
Spectral characterisation data, determination of the rate constant
and crossover studies, as well as a description of the theoretical
calculations. The Supporting Information is available free of
charge on the ACS Publications website.
AUTHOR INFORMATION
Corresponding Author
9
*Eꢀmail: pittel@chem.ku.dk
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
19. Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis.
Chem. Rev. 2016, 116, 10075ꢀ10166.
20. Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D. P.; Rueping, M.
Oxygen Switch in VisibleꢀLight Photoredox Catalysis: Radical
Additions and Cyclizations and Unexpected C–CꢀBond Cleavage
Reactions. J. Am. Chem. Soc. 2013, 135, 1823ꢀ1829.
21. Gilday, J. P.; Lenden, P.; Moseley, J. D.; Cox, B. G. The
Newman−Kwart Rearrangement: A Microwave Kinetic Study. J.
Org. Chem. 2008, 73, 3130ꢀ3134.
22. Shaker, M.; Park, B.; Lee, J.ꢀH.; kim, W.; Trinh, C. K.; Lee, H.ꢀ
J.; Choi, J. w.; Kim, H.; Lee, K.; Lee, J.ꢀS. Synthesis and organic
field effect transistor properties of isoindigo/DPPꢀbased polymers
containing a thermolabile group. RSC Advances 2017, 7, 16302ꢀ
16310.
23. Amou, S.; Takeuchi, K.; Asai, M.; Niizeki, K.; Okada, T.; Seino,
M.; Haba, O.; Ueda, M. Synthesis of regiocontrolled polymer
having 2ꢀnaphthol unit by CuClꢀamine catalyzed oxidative
coupling polymerization. J. Polym. Sci., Part A: Polym. Chem.
1999, 37, 3702ꢀ3709.
24. Dhakshinamoorthy, A.; Pitchumani, K. Clayꢀsupported ceric
ammonium nitrate as an effective, viable catalyst in the oxidation
of olefins, chalcones and sulfides by molecular oxygen. Catal.
Commun. 2009, 10, 872ꢀ878.
25. Nair, V.; Deepthi, A. Cerium(IV) Ammonium NitrateA Versatile
SingleꢀElectron Oxidant. Chem. Rev. 2007, 107, 1862ꢀ1891.
26. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Gaussianꢀ4
theory using reduced order perturbation theory. J. Chem. Phys.
2007, 127, 124105.
27. Gaussian 09, Revision A.02 and D.01, M. J. Frisch, G. W.
Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H.
Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G.
Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz,
A. F. Izmaylov, J. L. Sonnenberg, D. WilliamsꢀYoung, F. Ding,
F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T.
Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.
Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
28. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Gaussianꢀ4
theory. J. Chem. Phys. 2007, 126, 084108.
29. Maeda, K.; Okamoto, H.; Shinkai, H. Sꢀ(2ꢀ(Acylamino)phenyl)
2,2ꢀdimethylpropanethioates as CETP inhibitors. Bioorg. Med.
Chem. Lett. 2004, 14, 2589ꢀ2591.
30. Sugiyama, H.; Yoshida, M.; Mori, K.; Kawamoto, T.; Sogabe, S.;
Takagi, T.; Oki, H.; Tanaka, T.; Kimura, H.; Ikeura, Y. Synthesis
and Structure Activity Relationship Studies of Benzothieno[3,2ꢀ
b]furan Derivatives as a Novel Class of IKKβ Inhibitors. Chem.
Pharm. Bull. 2007, 55, 613ꢀ624.
ACKNOWLEDGMENT
We gratefully acknowledge support from the Danish Council for
Independent Research (DFF – 4181ꢀ00206).
REFERENCES
1. Newman, M. S.; Karnes, H. A. The Conversion of Phenols to
Thiophenols via Dialkylthiocarbamates. J. Org. Chem. 1966, 31,
3980ꢀ3984.
2. Kwart, H.; Evans, E. R. The Vapor Phase Rearrangement of
Thioncarbonates and Thioncarbamates. J. Org. Chem. 1966, 31,
410ꢀ413.
3. Błaszczyk, A.; Chadim, M.; Hänisch, C. v.; Mayor, M. Synthesis
of Macrocyclic Molecular Rods as Potential Electronic Devices.
Eur. J. Org. Chem. 2006, 2006, 3809ꢀ3825.
4. Kane, V. V.; Gerdes, A.; Grahn, W.; Ernst, L.; Dix, I.; Jones, P.
G.; Hopf, H. A novel entry into a new class of cyclophane
derivatives: synthesis of (±)ꢀ[2.2]paracyclophaneꢀ4ꢀthiol.
Tetrahedron Lett. 2001, 42, 373ꢀ376.
5. Hori, M.; Ban, M.; Imai, E.; Iwata, N.; Suzuki, Y.; Baba, Y.;
Morita, T.; Fujimura, H.; Nozaki, M.; Niwa, M. Novel
nonnarcotic analgesics with an improved therapeutic ratio.
Structureꢀactivity relationships of 8ꢀ(methylthio)ꢀ and 8ꢀ
(acylthio)ꢀ1,2,3,4,5,6ꢀhexahydroꢀ2,6ꢀmethanoꢀ3ꢀbenzazocines. J.
Med. Chem. 1985, 28, 1656ꢀ1661.
6. Otto, S.; Furlan, R. L. E.; Sanders, J. K. M. Selection and
Amplification of Hosts From Dynamic Combinatorial Libraries
of Macrocyclic Disulfides. Science 2002, 297, 590ꢀ593.
7. Sørensen, A.; Rasmussen, B.; Agarwal, S.; SchauꢀMagnussen,
M.; Sølling, T. I.; Pittelkow, M. Conversion of Phenols into
Selenophenols: Seleno Newman–Kwart Rearrangement. Angew.
Chem. Int. Ed. 2013, 52, 12346ꢀ12349.
8. Lin, S.; Moon, B.; Porter, K. T.; Rossman, C. A.; Zennie, T.;
Wemple, J. A Continuous Procedure for Preparation of paraꢀ
Functionalized Aromatic Thiols Using NewmanꢀKwart
Chemistry. Org. Prep. Proced. Int. 2000, 32, 547ꢀ555.
9. Dallinger, D.; Lehmann, H.; Moseley, J. D.; Stadler, A.; Kappe,
C. O. ScaleꢀUp of MicrowaveꢀAssisted Reactions in a Multimode
BenchꢀTop Reactor. Org. Process Res. Dev. 2011, 15, 841ꢀ854.
10. Burns, M.; LloydꢀJones, G. C.; Moseley, J. D.; Renny, J. S. The
Molecularity of the Newman−Kwart Rearrangement. J. Org.
Chem. 2010, 75, 6347ꢀ6353.
11. Miyazaki, K. The thermal rearrangement of thionocarbamates to
thiolcarbamates. Tetrahedron Lett. 1968, 9, 2793ꢀ2798.
12. Moseley, J. D.; Sankey, R. F.; Tang, O. N.; Gilday, J. P. The
NewmanꢀKwart rearrangement reꢀevaluated by microwave
synthesis. Tetrahedron 2006, 62, 4685ꢀ4689.
13. Moseley, J. D.; Lenden, P. A high temperature investigation
using microwave synthesis for electronically and sterically
disfavoured substrates of the NewmanꢀKwart rearrangement.
Tetrahedron 2007, 63, 4120ꢀ4125.
14. Hoffmann, I.; Schatz, J. Microwaveꢀmediated NewmanꢀKwart
rearrangement in water. RSC Advances 2016, 6, 80692ꢀ80699.
15. Harvey, J. N.; Jover, J.; LloydꢀJones, G. C.; Moseley, J. D.;
Murray, P.; Renny, J. S. The Newman–Kwart Rearrangement of
OꢀAryl Thiocarbamates: Substantial Reduction in Reaction
31. Perjessy, A.; Jones, R. G.; McClair, S. L.; Wilkins, J. M. Infrared
spectra and transmission of electronic effects in substituted
phenyl
N,Nꢀdimethylcarbamates
and
Sꢀphenyl
N,Nꢀ
dimethylthiocarbamates. J. Org. Chem. 1983, 48, 1266ꢀ1271.
7
ACS Paragon Plus Environment