ORGANIC
LETTERS
2004
Vol. 6, No. 10
1601-1603
Stereoselective Synthesis of
D-Desosamine and Related Glycals via
Tungsten-Catalyzed Alkynol
Cycloisomerization
Mary H. Davidson and Frank E. McDonald*
Department of Chemistry, Emory UniVersity, Atlanta, Georgia 30322
Received February 29, 2004
ABSTRACT
Stereoselective synthesis of D-desosamine diacetate ester (iii, R ) Ac) was achieved from the glycal (ii) generated by tungsten carbonyl-
catalyzed cycloisomerization of the corresponding amino-alkynol (i). A wide variety of N-substituents (R, R′) are compatible with the
cycloisomerization, provided that at least one R or R′ is an acyl derivative.
Deoxy amino sugars occur widely in nature, exhibiting varied
biological activities.1 In particular, amino sugars have been
identified as critical recognition and selectivity elements of
many classes of carbohydrate antibiotics.2 A strong potential
for pharmaceutical use, coupled with their intrinsic stereo-
complexity, makes these molecules worthy synthetic targets.3
Since its structural elucidation by chemical degradation and
NMR studies,4 D-desosamine, the 3,4,6-trideoxy-3-dimethyl-
aminohexose component of several important macrolide
antibiotics (erythromycin, narbomycin, picromycin, olean-
domycin),5 has elicited considerable synthetic interest.6
Herein, we report preparation of D-desosamine from the
glycal generated by our simple and versatile tungsten-
catalyzed alkynol endo-cycloisomerization reaction.7
Previous work from our laboratory has applied the
tungsten-catalyzed isomerization protocol to the preparation
of 1,2-pyranose glycals from non-carbohydrate alkynol
substrates, with subsequent elaboration to 2,3,6-trideoxy-
hexose oligosaccharides.8 Iterative application of the meth-
odology provided stereoselective preparation of 2,6-dideoxy
disaccharides,9 whereas synthesis of vancosamine and sac-
charosamine glycals extended the methodology to 3-amino-
2,3,6-trideoxyhexose structures.10 In this paper a series of
differentially acylated 3-amino-3,4,6-trideoxyhexose glycal
(1) Hudlicky, T.; Entwistle, D. A.; Pitzer, K. K.; Thorpe, A. J. Chem.
ReV. 1996, 96, 1195.
(6) (a) Tietze, L. F.; Hartfiel, U. Tetrahedron Lett. 1990, 31, 1697. (b)
Berube, G. Luce, E.; Jankowski, K. Bull. Soc. Chim. Fr. 1983, II, 109. (c)
Redlich, H.; Roy, W. Liebigs Ann. Chem. 1981, 1215. (d) Baer, H. H.;
Chiu, C. W. Can. J. Chem. 1974, 52, 122. (e) Korte, F.; Bilow, A.; Heinz,
R. Tetrahedron 1962, 18, 657.
(7) (a) Sheng, Y.; Musaev, D. G.; Reddy, K. S.; McDonald, F. E.;
Morokuma, K. J. Am. Chem. Soc. 2002, 124, 4149. (b) McDonald, F. E.;
Reddy, K. S. J. Organomet. Chem. 2001, 617, 444.
(8) (a) McDonald, F. E.; Zhu, H. Y. H. J. Am. Chem. Soc. 1998, 120,
4246. (b) McDonald, F. E.; Zhu, H. Y. H. Tetrahedron 1997, 53, 11061.
(9) (a) McDonald, F. E.; Reddy, K. S. Angew. Chem., Int. Ed. 2001, 40,
3653. (b) McDonald, F. E.; Reddy, K. S.; D´ıaz, Y. J. Am. Chem. Soc. 2000,
122, 4304.
(2) Mallams, A. The Carbohydrate-Containing Antibiotics. In Carbo-
hydrate Chemistry, 1st ed.; Kennedy, J. F., Ed.; Clarendon Press: Oxford,
1988; pp 73-133.
(3) Otsomaa, L. A.; Koskinen, A. M. P. Prog. Chem. Org. Nat. Prod.
1998, 74, 197.
(4) (a) Newman, H. J. Org. Chem. 1964, 29, 1461. (b) Hofheinz, W.;
Grisebach, H. Tetrahedron Lett. 1962, 3, 377. (c) Woo, P. W. K.; Dion, H.
W.; Durham, L.; Mosher, H. S. Tetrahedron Lett. 1962, 3, 735. (d) Bolton,
C. H.; Foster, A. B.; Stacey, M.; Webber, J. M. J. Chem. Soc. 1961, 4831.
(e) Flynn, E. H.; Sigal, M. V.; Wiley, P. F.; Gerzon, K. J. Am. Chem. Soc.
1954, 76, 3121.
(5) Richardson, A. C. J. Chem. Soc. 1964, 5364.
(10) Cutchins, W. W.; McDonald, F. E. Org. Lett. 2002, 4, 749.
10.1021/ol049630m CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/14/2004