Communications
reagents, such as chlorobutylmagnesium bromide (6a) or the
[1] T. Hudlicky, Chem. Rev. 1996, 96, 3 .
[2] a) S. R. Magnuson, Tetrahedron 1995, 51, 2167; b) C. S. Poss,
S. L. Schreiber, Acc. Chem. Res. 1994, 27, 9.
[3] a) L. F. Tietze, Chem. Rev. 1996, 96, 115; b) T.-L. Ho, Tandem
Organic Reagents, Wiley, New York, 1992.
[4] U. Scholz, E. Winterfeldt, Nat. Prod. Rep. 2000, 17, 349.
[5] a) L. F. Tietze, A. Modi, Med. Res. Rev. 2000, 20, 3 04; b) A.
Dömling, I. Ugi, Angew. Chem. 2000, 112, 3300; Angew. Chem.
Int. Ed. 2000, 39, 3168; c) R. W. Armstrong, A. P. Combs, P. A.
Tempest, S. D. Brown, T. A. Keating, Acc. Chem. Res. 1996, 29,
123.
[6] E. J. Corey, X.-C. Cheng, The Logic of Chemical Synthesis,
Wiley, New York, 1989, chap. 1.
[7] M. Hulce, M. J. Chapdelaine in Comprehensive Organic Syn-
thesis, Vol. 4 (Eds.: B. M. Trost, I. Fleming), Pergamon, Oxford,
1991, pp. 237 – 268.
related Grignard reagent 6b, for the conjugate addition
allows a smooth annulation route to the cis-fused decalin 4d
and hydrindane 4e, respectively (Table 1, entries 3and 4,
respectively). Similarly, carbonyl additions to the correspond-
ing five-membered oxonitrile 5c,[11] followed by addition of
the w-haloalkyl Grignard reagents 6a and 6b, generates
nitrile-substituted hydrindane and octalin rings in one syn-
thetic operation (Table 1, entries 5 and 6).
The rapid installation of three new stereocenters makes
the multicomponent Grignard addition to oxonitriles ideally
suited to terpenoid synthesis. Combining the multicompo-
nent addition with cationic cyclization provides a particularly
efficient entry to the dehydroabietic acid skeleton, several
congeners of which exhibit antitumor, antibiotic, and cyto-
toxic actitvity.[17] Sequential addition of MeMgCl and
Grignard 6c[18] to 5b followed by methylation with MeI
installs the entire abietane carbon skeleton (Scheme 3).
[8] F. F. Fleming, Q. Wang, O. W. Steward, J. Org. Chem. 2003, 68,
4235.
[9] F. F. Fleming, Q. Wang, Chem. Rev. 2003, 103, 2035.
[10] Prepared by oxidation[10a] of 1, R1 = H.[10b] a) A. Nudelman, E.
Keinan, Synthesis 1982, 687; b) F. F. Fleming, Q. Wang, O. W.
Steward, J. Org. Chem. 2001, 66, 2171.
[11] Oxidation of cyclohexenecarbonitrile and cyclopentenecarboni-
trile with CrO3-3,5-dimethylpyrazole,[11a] rather than pyridi-
ne,[11b] afforded oxonitriles 5b and 5c in 65% and 25% yield,
respectively. a) J. N. Johnson, Encyclopedia of Reagents for
Organic Synthesis, Vol. 2 (Ed.: L. A. Paquette), Wiley, Chi-
chester, 1995, pp. 1275 – 1277. a) H. E. Zimmerman, R. J. Pas-
teris, J. Org. Chem. 1980, 45, 4864.
[12] 1H NMR analysis of the crude reaction mixture failed to identify
any of the independently prepared diastereomeric nitrile.
[13] Methylation of 3b corresponds to a retentive alkylation of the
chiral C-magnesiated nitrile, as consistently observed in the
inter- and intramolecular alkylations (Table 1). The retentive
alkylations of 3b contrast with invertive acylations of a closely
related magnesiated nitrile[8] implying an unusual electrophile-
dependent stereoselectivity analogous to that observed with
selected chiral organolithium reagents.[a] Interception of 3b with
a range of electrophiles is being pursued to determine if the
alkylation stereoselectivity of this magnesiated nitrile is indeed
electrophile dependent. a) A. Basu, S. Thayumanavan Angew.
Chem. 2002, 114, 740; Angew. Chem. Int. Ed. 2002, 41, 717.
[14] X-ray crystallography of 4b and 4c confirmed the stereochem-
ical assignment. CCDC-218678 (4b) and CCDC-218679 (4c)
contain the supplementary crystallographic data for this paper.
ac.uk/conts/retrieving.html (or from the Cambridge Crystallo-
graphic Data Centre, 12, Union Road, Cambridge CB21EZ,
UK; fax: (+ 44)1223-336-033; or deposit@ccdc.cam.ac.uk).
[15] M. Abarbri, J. Thibonnet, L. Bꢀrillon, F. Dehmel, M. Rottlꢁnder,
P. Knochel, J. Org. Chem. 2000, 65, 4618.
Scheme 3. Multicomponent epi-dehydroabietic acid synthesis.
a) MeMgCl, THF, 1 h; 6c, ꢀ788C!RT; MeI, 2 h, 54%; b) Me3SO3H,
MeNO2, 08C, 1.5 h, 75%; c) NaOH, H2O, diethylene glycol, 16 h,
1708C; 6 h, 2468C; HCl 90%.
Intramolecular Friedel–Crafts alkylation affords predomi-
nantly[19] the cis-abietane 9, illustrating the advantage of the
small, non-nucleophilic nitrile that permits arylation without
prior interception of the carbocation intermediate 8 that
occurs with the corresponding ester.[20] Nitrile hydrolysis
completes the synthesis of epi-dehydroabietic acid 10.[21]
Multicomponent Grignard addition–alkylations of oxo-
nitriles rapidly assembles highly substituted mono- and
bicyclic nitriles. Employing w-haloalkyl Grignard reagents
permits an efficient route to octalins, hydrindanes, and
decalins with aryl-substituted Grignards being ideally suited
for annulation by Friedel–Crafts alkylations. Collectively the
strategy rapidly assembles a diverse array of cyclic nitriles,
with complete control over the three stereogenic centers.
[16] F. F. Fleming, Z. Zhang, Q. Wang, O. W. Steward, Org. Lett.
2002, 4, 2493.
[17] a) Y. Kinouchi, H. Ohtsu, H. Tokuda, H. Nishino, S. Matsunaga,
R. Tanaka, J. Nat. Prod. 2000, 63, 817; b) A. M. El-Sayed,
Zagazig J. Pharm. Sci. 1998, 7, 80; c) I. Rogers, H. Mahood, J.
Servizi, R. Gordon, PulpPap. Can. 1979, 80, 94.
[18] The Grignard reagent 6c[18a] is synthesized from 1-bromo-3-
isopropylbenzene:[18b] 1. Mg; ethylene oxide. 2. Ph3P, CCl4.
a) R. D. Haworth, R. L. Barker, J. Chem. Soc. 1939, 1299.
b) Commercially available from Lancaster.
Received: September 19, 2003[Z52920]
[19] Cyclization affords a 9:1 ratio of cis:trans abietanes in favor of 9.
[20] a) K. Fuji, S.-Z. Zheng, M. Node, X.-J. Hao, Chem. Pharm. Bull.
1991, 39, 202. b) A 13% yield of the carbocyclic ester is formed
from a carbocationic cyclization from the corresponding alke-
ne.[18a]
Keywords: alkylation · Grignard reagents · Michael addition ·
.
multicomponent reactions · oxonitriles
1128
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 1126 –1126