ChemComm
Communication
exhibited comparable cytotoxicity of DTX-CLPMs. This result
suggests that DTX release was rather facilitated from the DTX-
CLPMs after endocytosis by the fast transition from the bis-
complex to the mono-complex of the catechol–Fe3+ coordination.
The DTX from DTX-CrEL formulation would release upon placing in
the cell culture media. This is the main reason why DTX-CLPMs have
a relatively low toxicity compared to DTX-CrEL. CrEL may induce
severe toxicity over the DTX concentration of 1 mg mLꢀ1, formulated
by 210 mg mLꢀ1 CrEL. This result showed that DTX-CLPMs could
Fig. 2 (a) DTX release profiles from DTX-NPMs and DTX-CLPMs at the
PBS solution (pH 7.4) and (b) pH-controlled DTX release profiles from evade the side effects of DTX-CrEL formulations. Collectively, the
DTX-CLPMs. Each point represents the mean value of n experiments ꢁ
robust structure and the potential for reducing drug loss in blood
may enhance overall therapeutic efficacy in vivo for DTX-CLPMs
relative to free DTX and DTX-NPMs.
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korean government
(MSIP) (No. 2013R1A2A2A01009239 and 2012R1A5A2051388).
S.D. (n = 3).
catechol–Fe3+ core cross-linking could improve the structural
stability of polymer micelles under serum conditions.
The effect of core cross-linking on the DTX release was
evaluated under extracellular pH conditions (PBS, pH 7.4).
Fig. 2a shows that the DTX release from DTX-CLPMs was
greatly inhibited compared to that from DTX-NPMs. At 24 h,
approximately 44.7% of the DTX release was inhibited. This
indicates that the DTX diffusion from the core to the aqueous
media was efficiently protected by the core cross-links formed
at pH 7.4. As shown in Fig. 2b, DTX-CLPMs show contrasting
release profiles at endosomal and physiological pH. The release
rate of DTX at pH 5.0 is higher than at pH 7.4. This result shows
that after reaching the endosomes, core cross-links that were
changed from the bis-complex to the mono-complex could
facilitate the DTX release.
For visualization of cellular entry of DTX-CLPMs, fluorescein
isothiocyanate (FITC)-labeled DTX-CLPMs was monitored in
MCF-7 cells (Fig. S7 in the ESI†). As the incubation time
increased, the green FITC fluorescence intensity gradually
increased and became constant after 1 h. This obviously
indicates the endocytosis of DTX-CLPMs. Viability of breast
cancer MCF-7 cells at DTX-free NPMs, CLPMs, and commercial
Cremophor EL (CrEL) surfactants was estimated. As shown in
Fig. 3a, DTX-free NPMs and CLPMs exhibited no noticeable
cytotoxicities up to 500 mg mLꢀ1, whereas CrEL exhibited severe
cytotoxicity over the concentration of 250 mg mLꢀ1. Fig. 3b
showed the in vitro cytotoxicity of DTX-CrEL, DTX-NPMs and
DTX-CLPMs for MCF-7 cells after 24 h. DTX-CLPMs effectively
inhibited the proliferation of MCF-7 cells, and DTX-NPMs
Notes and references
1 K. Y. Choi, H. Y. Yoon, J.-H. Kim, S. M. Bae, R.-W. Park, Y. M. Kang,
I.-S. Kim, I. C. Kwon, K. Choi and S. Y. Jeong, ACS Nano, 2011, 5,
8591–8599.
2 E. Burakowska, S. C. Zimmerman and R. Haag, Small, 2009, 5,
2199–2204.
3 P. Hu and N. Tirelli, Bioconjugate Chem., 2012, 23, 438–449.
4 N. Fomina, J. Sankaranarayanan and A. Almutairi, Adv. Drug Delivery
Rev., 2012, 64, 1005–1020.
5 K. Y. Choi, K. H. Min, H. Y. Yoon, K. Kim, J. H. Park, I. C. Kwon,
K. Choi and S. Y. Jeong, Biomaterials, 2011, 32, 1880–1889.
6 K. H. Min, H. J. Lee, K. Kim, I. C. Kwon, S. Y. Jeong and S. C. Lee,
Biomaterials, 2012, 33, 5788–5797.
7 A. N. Koo, K. H. Min, H. J. Lee, S. U. Lee, K. Kim, I. C. Kwon, S. H. Cho,
S. Y. Jeong and S. C. Lee, Biomaterials, 2012, 33, 1489–1499.
8 L. Wu, Y. Zou, C. Deng, R. Cheng, F. Meng and Z. Zhong, Biomaterials,
2013, 34, 5262–5272.
9 R. Shrestha, M. Elsabahy, S. Florez-Malaver, S. Samarajeewa and
K. L. Wooley, Biomaterials, 2012, 33, 8557–8568.
10 H. He, S. Chen, J. Zhou, Y. Dou, L. Song, L. Che, X. Zhou, X. Chen,
Y. Jia, J. Zhang, S. Li and X. Li, Biomaterials, 2013, 34, 5344–5358.
11 S. J. Lee, K. H. Min, H. J. Lee, A. N. Koo, H. P. Rim, B. J. Jeon,
S. Y. Jeong, J. S. Heo and S. C. Lee, Biomacromolecules, 2011, 12,
1224–1233.
12 H. P. Rim, K. H. Min, H. J. Lee, S. Y. Jeong and S. C. Lee, Angew.
Chem., Int. Ed., 2011, 50, 8853–8857.
´
13 (a) E. R. Gillies and J. M. J. Frechet, Bioconjugate Chem., 2005, 16,
361–368; (b) M. Prabaharan, J. J. Grailer, S. Pilla, D. A. Steeber and
S. Gong, Biomaterials, 2009, 30, 5757–5766; (c) S. Lee, K. Saito, H.-R.
Lee, M. J. Lee, Y. Shibasaki, Y. Oishi and B.-S. Kim, Biomacromolecules,
2012, 13, 1190–1196.
14 Y. Li, W. Xiao, K. Xiao, L. Berti, J. Luo, H. P. Tseng, G. Fung and
K. S. Lam, Angew. Chem., Int. Ed., 2012, 51, 2864–2869.
15 H. Xu, J. Nishida, W. Ma, H. Wu, M. Kobayashi, H. Otsuka and
A. Takahara, ACS Macro Lett., 2012, 1, 457–460.
16 H. Zeng, D. S. Hwang, J. N. Israelachvili and J. H. Waite, Proc. Natl.
Acad. Sci. U. S. A., 2010, 107, 12850–12853.
17 N. Holten-Andersen, M. J. Harrington, H. Birkedal, B. P. Lee,
P. B. Messersmith, K. Y. C. Lee and J. H. Waite, Proc. Natl. Acad.
Sci. U. S. A., 2011, 108, 2651–2655.
18 S. W. Taylor, G. W. Luther III and J. H. Waite, Inorg. Chem., 1994, 33,
5819–5824.
19 H. Lee, N. F. Scherer and P. B. Messersmith, Proc. Natl. Acad. Sci.
U. S. A., 2006, 103, 12999–13003.
20 H. J. Lee, S. E. Kim, I. K. Kwon, C. Park, C. Kim, J. Yang and S. C. Lee,
Chem. Commun., 2010, 46, 377–379.
21 A. N. Koo, H. J. Lee, S. E. Kim, J. H. Chang, C. Park, C. Kim, J. H. Park
and S. C. Lee, Chem. Commun., 2008, 6570–6572.
Fig. 3 (a) Viability of MCF-7 cells at various concentrations of NPMs,
CLPMs, CrEL after 24 h. (b) In vitro cytotoxicity of DTX-CrEL, DTX-NPMs,
DTX-CLPMs for MCF-7 cells after 24 h (n = 3).
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 4351--4353 | 4353