Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
decarboxylative alkenylation proceeds through a free radical
pathway.16 Finally, besides reaction with tertiary alkyl
demonstrated in our previous work,5 the reaction also
proceeded well with RAEs that deliver secondary and primary
normal alkyls (eq. 2 and 3), though the reaction with primary
normal alkyl proceeded in relatively lower yield. The reaction
did not proceed well with RAE derived from phenyl acetic acid.
MacMillan, Science, 2016, 353, 279; (De)OCI:.10P..10J3o9h/nCs9tCoCn0,9R6.54TJ.
smith, S. Allmendinger and D. W. C. MacMillan, Nature, 2016,
536, 322; (f) C. Le, Y. Liang, R. W. Evans, X. Li and D. W. C.
MacMillan, Nature, 2017, 547, 79; (g) E. R. Welin, C. Le, D. M.
Arias-Rotondo, J. K. McCusker and D. W. C. MacMillan,
Science, 2017, 355, 380.
3
4
(a) N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016, 116,
10075; (b) J. Luo and J. Zhang, ACS Catal., 2016, 6, 873; (c) M.
K. Bogdos, E. Pinard and J. A. Murphy, Beilstein J. Org. Chem.,
2018, 14, 2035.
(a) T. Qin, J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S.
Kawamura, B. D. Maxwell, M. D. Eastgate and P. S. Baran,
Science, 2016, 352, 801; (b) W.-M. Cheng, R. Shang and Y. Fu,
ACS Catal., 2017, 7, 907; (c) W.-M. Cheng, R. Shang, M.-C. Fu
and Y. Fu, Chem. Eur. J., 2016, 22, 11161; (d) S. Murarka, Adv.
Synth. Catal., 2018, 360, 1735; (e) J. Schwarz and B. König,
Green Chem., 2018, 20, 323; (f) J.-Q. Liu, A. Shatskiya, B. S.
Matsuura and M. D. Kärkäs, Synthesis, 2019, 51, 2759.
M.-C. Fu, R. Shang, B. Zhao, B. Wang and Y. Fu, Science, 2019,
363, 1429.
(a) J. T. Edwards, R. R. Merchant, K. S. McClymont, K. W.
Knouse, T. Qin, L. R. Malins, B. Vokits, S. A. Shaw, D.-H. Bao,
F.-L. Wei, T. Zhou, M. D. Eastgate and P. S. Baran, Nature,
2017, 545, 213; (b) G.-Z. Wang, R. Shang and Y. Fu, Org. Lett.,
2018, 20, 888; (c) M. Koy, F. Sandfort, A. Tlahuext-Aca, L.
Quach, C. G. Daniliuc and F. Glorius, Chem. Eur. J., 2018, 24,
4552.
(a) A. J. Borah and G. Yan, Org. Biomol. Chem., 2015, 13, 8094;
(b) C. Wang, Y. Lei, M. Guo, Q. Shang, H. Liu, Z. Xu and R. Wang,
Org. Lett., 2017, 19, 6412.
5
6
In conclusion, NaI/PPh3 works as an easily accessible and
low-cost redox catalyst for decarboxylative alkenylation of
various RAEs derived from -amino acids, -hydroxy acids, and
also thioglycolic acid with 1,1-diarylethenes. Cinnamic acid and
its analogues were also used as alkenylation reagents through
double decarboxylation. The reactions reported herein offers a
low-cost and operationally simple method to synthesize
compounds containing allylic amine and allylic ether structures
from biomass-derived carboxylic acids.
7
8
9
(a) K. Xu, Z. Tan, H. Zhang, J. Liu, S. Zhang and Z. Wang, Chem.
Commun., 2017, 53, 10719; (b) J.-J. Zhang, J.-C. Yang, L.-N.
Guo and X.-H. Duan, Chem. Eur. J., 2017, 23, 10259.
M.-Y. Li, M. González-Esguevillas, S. Berritt, X.-D. Yang, A.
Bellomo and P. J. Walsh, Angew. Chem., Int. Ed., 2016, 55,
2825.
We are grateful for the support from National Key R&D
Program of China (2018YFB1501600), National Natural Science
Foundation of China (21572212, 21732006, 51821006,
51961135104), Strategic Priority Research Program of CAS
(XDB20000000), HCPST (2017FXZY001), KY (2060000119), China
Postdoctoral Science Foundation (2018M642519), the
Fundamental Research Funds for the Central Universities
(WK2060120005) and USTC Research Funds of the Double First-
Class Initiative (YD2060002003).
10 (a) C. Hu and Y. Chen, Org. Chem. Front., 2015, 2, 1352; (b) H.
Cao, H. Jiang, H. Feng, J. M. C. Kwan, X. Liu and J. Wu, J. Am.
Chem. Soc., 2018, 140, 16360; (c) X. Jiang, M.-M. Zhang, W.
Xiong, L.-Q. Lu and W.-J. Xiao, Angew. Chem., Int. Ed., 2019,
58, 2402.
11 M. C. R. Symons and R. L. Petersen, J. Chem. Soc., Faraday
Trans. 2., 1979, 75, 210.
12 (a) A. Noble and V. K. Aggarwa, Sci. China Chem., 2019, 62,
1083; (b) B. List and Y. Li, Synfacts, 2019, 15, 0791.
13 O. Kysel, G. Juhász, P. Mach and G. Košík, Chem. Pap., 2007,
61, 66.
14 (a) S. Bloom, C. Liu, D. K. Kölmel, J. X. Qiao, Y. Zhang, M. A.
Poss, W. R. Ewing and D. W. C. MacMillan, Nat. Chem., 2017,
10, 205; (b) J. Wang, H. Lundberg, S. Asai, P. Martín-Acosta, J.
S. Chen, S. Brown, W. Farrell, R. G. Dushin, C. J. O’Donnell, A.
S. Ratnayake, P. Richardsonc, Z. Liu, T. Qin, D. G. Blackmond
and P. S. Baran, Proc. Natl. Acad. Sci. U. S. A., 2018, 115,
E6404.
Conflicts of interest
The authors declare no competing interests.
Notes and references
15 (a) H. C. Brown, G. W. Kramer, A. B. Levy and M. M. Midland,
Organic Syntheses via Boranes, Wiley-Interscience, New York,
1975; (b) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95,
2457.
16 (a) Ł. Woźniak, J. J. Murphy and P. Melchiorre, J. Am. Chem.
Soc., 2015, 137, 5678; (b) D. Wang, N. Zhu, P. Chen, Z. Lin and
G. Liu, J. Am. Chem. Soc., 2017, 139, 15632.
1
(a) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322; (b) M. H. Shaw, J. Twilton and D. W. C.
MacMillan, J. Org. Chem., 2016, 81, 6898; (c) M. N. Hopkinson,
A. Tlahuext-Aca and F. Glorius, Acc. Chem. Res., 2016, 49,
2261; (d) J. J. Douglas, M. J. Sevrin and C. R. J. Stephenson,
Org. Process Res. Dev., 2016, 20, 1134; (e) J. Twilton, C. Le, P.
Zhang, M. H. Shaw, R. W. Evans and D. W. C. MacMillan, Nat.
Rev. Chem., 2017, 1, 0052. (f) M. D. Karkäs̈, ACS Catal., 2017,
7, 4999.
2
(a) J. Xuan and W.-J. Xiao, Angew. Chem., Int. Ed., 2012, 51,
6828; (b) J. C. Tellis, D. N. Primer and G. A. Molander, Science,
2014, 345, 433; (c) J. Jin and D. W. C. MacMillan, Nature, 2015,
525, 87; (d) E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins