Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
one quaternary and two tertiary stereogenic centers, could be
smoothly obtained in excellent results (up to 99% yield, >20:1
dr and 96% ee) under mild conditions. These products are
featured with an intriguing combination of two privileged
motifs including 3-pyrrolyl-substituted-oxindoles and 2,3-
dihydrobenzofurans substructures. This work represents the
first example of catalytic asymmetric dearomatizaiton of
electron-deficient nitroheteroarenes via a single reaction
Guo, Chem. Commun., 2019, 55, 553;D(dO)I:J1.0-Q.10. 3Z9h/aCo9,CYC.09Y9a3n9gE,
X.-J. Zhou, Y. You, Z.-H. Wang, M.-Q. Zhou, X.-M. Zhang, X.-Y.
Xu and W.-C. Yuan, Org. Lett., 2019, 21, 660; (e) X.-J. Zhou, J.-
Q. Zhao, X.-M. Chen, J.-R. Zhuo, Y.-P. Zhang, Y.-Z. Chen, X.-M.
Zhang, X.-Y. Xu and W.-C. Yuan, J. Org. Chem., 2019, 84,
4381; (f) X.-H. Yang, J.-P. Li, D.-C.Wang, M.-S. Xie, G.-R. Qu
and H.-M. Guo, Chem. Commun., 2019, 55, 9144.
7. D.-F. Yue, J.-Q. Zhao, Y.-Z. Chen, X.-M. Zhang, X.-Y. Xu and
W.-C. Yuan, Adv. Synth. Catal., 2018, 360, 1420.
8. For recent review, see: Z. Chen, M. Pitchakuntal and Y. Jia,
Nat. Prod. Rep., 2019, 36, 666.
process. Importantly,
a preliminary biological evaluation
indicated the products have moderate to good cytotoxicity in
vitro against different human cancer cells. Further exploration
on the catalytic asymmetric dearomatization of electron-
deficient heteroarenes for the construction of more
interesting molecules is currently underway.
We are grateful for financial support from the National
NSFC (21572223, 21871252, and 21901024), the National Key
R&D Program of China (2018YFC0807301-3), the Project of
Youth Science and Technology Innovation Team of Sichuan
Province (2016TD0027).
9. For selected reviews, see: (a) Y.-L. Liu and J. Zhou, Adv.
Synth. Catal., 2010, 352, 1381; (b) K. Shen, X. Liu, L. Lin and
X. Feng, Chem. Sci., 2012, 3, 327; (c) R. Rios, Chem. Soc. Rev.,
2012, 41, 1060; (d) R. Dalpozzo, G. Bartoli and G. Bencivenni,
Chem. Soc. Rev., 2012, 41, 7247; (e) L. Hong and R. Wang,
Adv. Synth. Catal., 2013, 355, 1023; (f) D. Cheng, Y. Ishihara,
B. Tan and C. F. Barbas III, ACS Catal., 2014, 4, 743; (g) J.-S.
Yu, F. Zhou, Y.-L. Liu and J. Zhou, Synlett, 2015, 26, 2491; (h) J.
Kaur, S. S. Chimni, S. Mahajan and A. Kumar, RSC Adv.,
2015,5, 52481; (i) G.-J. Mei and F. Shi, Chem. Commun. 2018,
54, 6607; (j) Y. C. Zhang, F. Jiang and F. Shi, Acc. Chem. Res.,
2019, 10.1021/acs.accounts.9b00549. For selected relevant
examples about the synthesis of chiral nitrogenous
heterocycles including oxindoles, see: (k) L.-J. Zhou, Y.-C.
Zhang, F. Jiang, G. He, J. Yan, H. Lu, S. Zhang and F. Shi, Adv.
Synth. Catal., 2016, 358, 3069; (l) W. Guo, Y. Liu and C. Li,
Org. Lett., 2017, 19, 1044; (m) C. Ma, J.-Y. Zhou, Y.-Z. Zhang,
G.-J. Mei and F. Shi, Angew. Chem. Int. Ed., 2018, 57, 5398.
10. (a) B. S. Jensen, CNS Drug Rev., 2002, 8, 353; (b) C. V.
Galliford and K. A. Scheidt, Angew. Chem., Int. Ed., 2007, 46,
8748; (c) J. J. Badillo, N. V. Hanhan and A. K. Franz, Curr.
Opin. Drug Discovery Dev., 2010, 13, 758; (d) G. S. Singh and
Z. Y. Desta, Chem. Rev., 2012, 112, 6104; (e) T. L. Pavlovska,
R. Redkin, V. V. Lipson and D. V. Atamanuk, Mol. Diversity,
2016, 20, 299.
Notes and references
1. For selected reviews on the catalytic asymmetric
dearomatization reactions, see: (a) C.-X. Zhuo, W. Zhang and
S.-L. You, Angew. Chem., Int. Ed., 2012, 51, 12662; (b) C.-X.
Zhuo, C. Zheng, S.-L. You, Acc. Chem. Res., 2014, 47, 2558; (c)
W.-T. Wu, L. Zhang and S.-L. You, Chem. Soc. Rev. 2016, 45,
1570; (e) W.-T. Wu, L. Zhang and S.-L. You, Acta Chim.
Sinica., 2017, 75, 419; (d) G. Huang and B. Yin, Adv. Synth.
Catal., 2019, 361, 405.
2. For selected recent examples, see: (a) Z.-P. Yang, C. Zheng, L.
Huang, C. Qian and S.-L. You, Angew. Chem. Int. Ed., 2017,
56, 1530; (b) L.-W. Feng, H. Ren, H. Xiong, P. Wang, L. Wang
and Y. Tang, Angew. Chem. Int. Ed., 2017, 56, 3055; (c) F.
Jiang, D. Zhao, X. Yang, F.-R. Yuan, G.-J. Mei and F. Shi, ACS
Catal., 2017, 7, 6984; (d) H.-F. Tu, C. Zheng, R.-Q. Xu, X.-J. Liu
and S.-L. You, Angew. Chem. Int. Ed., 2017, 56, 3237; (e) M.-
C. Zhang, D.-C. Wang, M.-S. Xie, G.-R. Qu, H.-M. Guo and S.-L.
You, Chem., 2019, 15, 156.
3. For selected examples, see: (a) I. Chataigner, S. R. Piettre,
Org. Lett., 2007, 9, 4159; (b) S. Lee, I. Chataigner, S. R.
Piettre, Angew. Chem. Int. Ed., 2011, 50, 472. (c) B. M. Trost,
V. Ehmke, B. M. O’Keefe and D. A. Bringley, J. Am. Chem.
Soc., 2014, 136, 8213.
4. J.-Q. Zhao, X.-J. Zhou, Y.-Z. Chen, X.-Y. Xu, X.-M. Zhang and
W.-C. Yuan, Adv. Synth. Catal., 2018, 360, 2482.
5. For selected examples see: (a) Awata, A.; Arai, T. Angew.
Chem. Int. Ed., 2014, 53, 10462; (b) J.-Q. Zhao, M.-Q. Zhou,
Z.-J. Wu, Z.-H. Wang, D.-F. Yue, X.-Y. Xu, X.-M. Zhang and W.-
C. Yuan, Org. Lett., 2015, 17, 2238; (c) J.-Q. Zhao, Z.-J. Wu,
M.-Q. Zhou, X.-Y. Xu, X.-M. Zhang and W.-C. Yuan, Org. Lett.,
2015, 17, 5020; (d) Y. Li, F. Tur, R. P. Nielsen, H. Jiang, F.
Jensen and K. A. Jørgensen, Angew. Chem. Int. Ed., 2016, 55,
1020; (e) D.-F. Yue, J.-Q. Zhao, X.-Z. Chen, Y. Zhou, X.-M.
Zhang, X. Y. Xu and W.-C. Yuan, Org. Lett., 2017, 19, 4508; (f)
Q. Cheng, F. Zhang, Y. Cai, Y.-L. Guo and S. L. You, Angew.
Chem. Int. Ed., 2018, 57, 2134; (g) H.-M. Wang, J.-Y. Zhang,
Y.-S. Tu and J.-L. Zhang, Angew. Chem. Int. Ed., 2019, 58,
5422; (h) K.-Z. Li, T. P. Gonçalves, K.-W. Huang and Y. Lu,
Angew. Chem. Int. Ed. 2019, 58, 5427; (i) X.-M. Chen, C.-W.
Lei, D.-F. Yue, J.-Q. Zhao, Z.-H. Wang, X.-M. Zhang, X.-Y. Xu
and W.-C. Yuan, Org. Lett., 2019, 21, 5452.
11. (a) B.-D. Cui, Y. You, J. -Q. Zhao, J. Zuo, Z. -J. Wu, X. -Y. Xu, X. -
M. Zhang and W. -C. Yuan, Chem. Commun., 2015, 51, 757;
(b) Y. You, Z.-J. Wu, J.-F. Chen, Z.-H. Wang, X.-Y. Xu, X.-M.
Zhang and W.-C. Yuan, J. Org. Chem., 2016, 81, 5759; (c) K.
Wang, L. Wang, X. Liu, D. Li, H. Zhu, P. Wang, Y. Liu, D. Yang
and R. Wang, Org. Lett., 2017, 19, 4351; (d) W.-T. Fan, N.-K.
Li, L. Xu, C. Qiao and X.-W. Wang, Org. Lett., 2017, 19, 6626;
(e) N.-K. Li, W.-T. Fan, J.-Q. Zhang, B.-B. Sun, J.-B. Chen and
X.-W. Wang, Chem. Commun., 2018, 54, 2260.
12. CCDC-1943699
(3d)
contains
the
supplementary
crystallographic data for this paper.
13. A possible activation mode to account for the
stereochemistry of the Michael addition process was
proposed, for the details see ESI.
14. (a) T. J. J. Mosmann, Immunol. Methods 1983, 65, 55; (b) M.
C. D. A. Alley, Scudiero, A. Monks, M. L. Hursey, M. J.
Czerwinski, D. L. Fine, B. J. Abbott, R. H. Shoemaker and M.
R. Boyd, Cancer Res. 1988, 48, 589.
15. For details on the biological activities evaluation, see ESI.
6. (a) Q. Cheng, H.-J. Zhang, W.-J. Yue and S.-L. You, Chem.,
2017, 3, 428; (b) J.-Q. Zhao, X.-J. Zhou, Y. Zhou, X.-Y. Xu, X.-
M. Zhang and W.-C. Yuan, Org. Lett. 2018, 20, 909; (c) L.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins