Journal of the American Chemical Society
Article
(6) Kambe, N.; Iwasaki, T.; Terao, J. Chem. Soc. Rev. 2011, 40, 4937−
4947.
(7) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656−
2670.
(41) Terao, J.; Naitoh, Y.; Kuniyasu, H.; Kambe, N. Chem. Commun.
2007, 825−827.
(42) For examples of catalysis using preformed metal complexes, see
refs 18 and 30−34.
(43) For seminal work on the role of radical species in cross-coupling
reactions, see ref 44.
(8) Hu, X. L. Chem. Sci. 2011, 2, 1867−1886.
(9) See refs 10−20 for pioneering work.
(44) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351−360.
(45) Csok, Z.; Vechorkin, O.; Harkins, S. B.; Scopelliti, R.; Hu, X. L.
J. Am. Chem. Soc. 2008, 130, 8156−8157.
(10) Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992,
691−694.
(11) Giovannini, R.; Studemann, T.; Dussin, G.; Knochel, P. Angew.
Chem., Int. Ed. 1998, 37, 2387−2390.
(46) Vechorkin, O.; Csok, Z.; Scopelliti, R.; Hu, X. L. Chem.Eur. J.
2009, 15, 3889−3899.
(12) Devasagayaraj, A.; Studemann, T.; Knochel, P. Angew. Chem.,
Int. Ed. 1995, 34, 2723−2725.
(47) Vechorkin, O.; Hu, X. L. Angew. Chem., Int. Ed. 2009, 48, 2937−
2940.
(13) Cahiez, G.; Chaboche, C.; Jezequel, M. Tetrahedron 2000, 56,
2733−2737.
(48) Garcia, P. M. P.; Di Franco, T.; Orsino, A.; Ren, P.; Hu, X. L.
Org. Lett. 2012, 14, 4286−4289.
(14) Netherton, M. R.; Dai, C. Y.; Neuschutz, K.; Fu, G. C. J. Am.
Chem. Soc. 2001, 123, 10099−10100.
(49) Breitenfeld, J.; Scopelliti, R.; Hu, X. L. Organometallics 2012, 31,
2128−2136.
(15) Zhou, J. R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726−
14727.
(50) Trovitch, R. J.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc.
2008, 130, 11631−11640.
(16) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J.
(51) MacLeod, K. C.; Conway, J. L.; Tang, L. M.; Smith, J. J.;
Corcoran, L. D.; Ballem, K. H. D.; Patrick, B. O.; Smith, K. M.
Organometallics 2009, 28, 6798−6806.
Am. Chem. Soc. 2002, 124, 4222−4223.
(17) Tsuji, T.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2002,
41, 4137−4139.
(52) Zhu, D.; Budzelaar, P. H. M. Organometallics 2010, 29, 5759−
5761.
(18) Martin, R.; Furstner, A. Angew. Chem., Int. Ed. 2004, 43, 3955−
3957.
(19) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, B. J. Am. Chem.
(53) Velian, A.; Lin, S. B.; Miller, A. J. M.; Day, M. W.; Agapie, T. J.
Am. Chem. Soc. 2010, 132, 6296−6297.
Soc. 2004, 126, 3686−3687.
(54) Kinney, R. J.; Jones, W. D.; Bergman, R. G. J. Am. Chem. Soc.
1978, 100, 635−637.
(20) Nagano, T.; Hayashi, T. Org. Lett. 2004, 6, 1297−1299.
(21) See refs 22−34 for selected recent examples.
(22) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am. Chem.
Soc. 2012, 134, 5794−5797.
(55) Kinney, R. J.; Jones, W. D.; Bergman, R. G. J. Am. Chem. Soc.
1978, 100, 7902−7915.
(56) See the Supporting Information.
(23) Oelke, A. J.; Sun, J. W.; Fu, G. C. J. Am. Chem. Soc. 2012, 134,
2966−2969.
(24) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 15362−
15364.
(25) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154−
8157.
(57) Breitenfeld, J.; Vechorkin, O.; Corminboeuf, C.; Scopelliti, R.;
Hu, X. L. Organometallics 2010, 29, 3686−3689.
(58) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012,
338, 647−651.
(59) Fischer, H. Chem. Rev. 2001, 101, 3581−3610.
(60) Studer, A. Chem.Eur. J. 2001, 7, 1159−1164.
(61) Studer, A. Chem. Soc. Rev. 2004, 33, 267−273.
(62) Daikh, B. E.; Finke, R. G. J. Am. Chem. Soc. 1991, 113, 4160−
4172.
(26) Yang, C. T.; Zhang, Z. Q.; Liang, J.; Liu, J. H.; Lu, X. Y.; Chen,
H. H.; Liu, L. J. Am. Chem. Soc. 2012, 134, 11124−11127.
(27) Yang, C. T.; Zhang, Z. Q.; Liu, Y. C.; Liu, L. Angew. Chem., Int.
Ed. 2011, 50, 3904−3907.
(63) Rueda-Becerril, M.; Sazepin, C. C.; Leung, J. C. T.; Okbinoglu,
T.; Kennepohl, P.; Paquin, J. F.; Sammis, G. M. J. Am. Chem. Soc.
2012, 134, 4026−4029.
(28) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc. 2012,
134, 6146−6159.
(29) Ren, P.; Stern, L.-A.; Hu, X. L. Angew. Chem., Int. Ed. 2012, 51,
9110−9113.
(64) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−241.
(65) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157−167.
(66) Schafer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97,
2571−2577.
(30) Ren, P.; Vechorkin, O.; von Allmen, K.; Scopelliti, R.; Hu, X. L.
J. Am. Chem. Soc. 2011, 133, 7084−7095.
(31) Vechorkin, O.; Godinat, A.; Scopelliti, R.; Hu, X. L. Angew.
Chem., Int. Ed. 2011, 50, 11777−11781.
(67) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
2009, 113, 6378−6396.
(32) Hatakeyama, T.; Hashimoto, T.; Kathriarachchi, K.; Zenmyo,
T.; Seike, H.; Nakamura, M. Angew. Chem., Int. Ed. 2012, 51, 8834−
8837.
(68) Maji, M. S.; Pfeifer, T.; Studer, A. Angew. Chem., Int. Ed. 2008,
47, 9547−9550.
(69) Illies, L.; Matsubara, T.; Nakamura, E. Org. Lett. 2012, 14,
5570−5573.
(33) Hatakeyama, T.; Okada, Y.; Yoshimoto, Y.; Nakamura, M.
Angew. Chem., Int. Ed. 2011, 50, 10973−10976.
(34) Guisan-Ceinos, M.; Tato, F.; Bunuel, E.; Calle, P.; Cardenas, D.
J. Chem. Sci. 2013, 4, 1098−1104.
(35) See ref 34 and 36−41 for selected experimental mechanistic
studies.
(36) Sherry, B. D.; Furstner, A. Acc. Chem. Res. 2008, 41, 1500−1511.
(37) Noda, D.; Sunada, Y.; Hatakeyama, T.; Nakamura, M.;
Nagashima, H. J. Am. Chem. Soc. 2009, 131, 6078−6079.
(38) Adams, C. J.; Bedford, R. B.; Carter, E.; Gower, N. J.; Haddow,
M. F.; Harvey, J. N.; Huwe, M.; Cartes, M. A.; Mansell, S. M.;
Mendoza, C.; Murphy, D. M.; Neeve, E. C.; Nunn, J. J. Am. Chem. Soc.
2012, 134, 10333−10336.
(39) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O. R.; Hall, R.
E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers, P. J.;
Pulay, P.; Vicic, D. A. J. Am. Chem. Soc. 2006, 128, 13175−13183.
(40) Anderson, T. J.; Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc.
2004, 126, 8100−8101.
(70) Powers, D. C.; Ritter, T. Nature Chem. 2009, 1, 302−309.
(71) Powers, D. C.; Lee, E.; Ariafard, A.; Sanford, M. S.; Yates, B. F.;
Canty, A. J.; Ritter, T. J. Am. Chem. Soc. 2012, 134, 12002−12009.
(72) [(N2N)Ni-I] is generated after each catalytic cycle; however,
under catalytic conditions, [(N2N)Ni-I] reacts rapidly with MgCl2 or
MgICl to give [(N2N)Ni-Cl]. See: Vechorkin V., EPFL Thesis, 2011,
number 5058.
(73) Nickel(III) intermediates might be invlolved in oxidative
carbon−halide bond-forming reactions; see refs 74 and 75.
(74) Higgs, A. T.; Zinn, P. J.; Simmons, S. J.; Sanford, M. S.
Organometallics 2009, 28, 6142−6144.
(75) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134,
17456−17458.
I
dx.doi.org/10.1021/ja4051923 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX