Communications
Table 1: Summary of ethylene polymerization data with the Ni complex.[a]
K. K. Baldridge, R. B. English, D. M. Ho,
Angew. Chem. 1995, 107, 2870 – 2873;
Angew. Chem. Int. Ed. Engl. 1995, 34,
2657 – 2660; e) C. D. Gutsche, Calixarenes,
Royal Society of Chemistry, Cambridge,
1989; f) D. J. Cram, Angew. Chem. 1986,
98, 1041 – 1060; Angew. Chem. Int. Ed. Engl.
1986, 25, 1039 – 1057; g) C. Seel, F. Vögtle,
Angew. Chem. 1992, 104, 542 – 563; Angew.
Chem. Int. Ed. Engl. 1992, 31, 528 – 549.
[2] a) R. Uhrhammer, D. G. Black, T. G. Gard-
ner, J. D. Olsen, R. F. Jordan, J. Am. Chem.
Soc. 1993, 115, 8493 – 8494; b) M. V. Baker,
B. W. Skelton, A. H. White, C. C. Williams,
J. Chem. Soc. Dalton Trans. 2001, 111 – 120;
c) B. L. Small, Ph.D. thesis, University of
North Carolina Chapel Hill, 1998, chap. 2,
pp. 15–23.
Entry Moles of T [8C] t [min] Yield [g] TOF[b]
Mn
PDI
Branches per
[c]
¯
catalyst
[103 hÀ1
]
[103 hÀ1
]
1000 C atoms[d]
[106]
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
1
1
30
30
30
50
50
50
70
70
70
90
90
90
5
10
15
5
10
15
5
10
15
5
10
15
3.48
6.70
9.25
3.20
6.85
9.00
3.11
6.10
7.35
2.50
4.70
4.62
1491
1436
1321
1371
1468
1286
1333
1307
1050
1071
1007
660
320
288
294
248
652
342
323
619
429
252
462
292
1.29 66
1.30 73
1.31 67
1.23 80
1.28 84
1.23 85
1.45 91
1.43 89
1.41 91
1.72 97
1.64 96
1.40 96
10
11
12
[a] Experimental conditions: in 200 mL of toluene, cocatalyst MMAO (Al:Ni ꢀ3000), 200 psi ethylene
pressure. [b] TOF=turnover frequency, which was calculated as the moles of ethylene per mole of
[3] a) S. D. Ittel, L. K. Johnson, M. Brookhart,
Chem. Rev. 2000, 100, 1169 – 1203; b) V. C.
Gibson, S. K. Spitzmesser, Chem. Rev. 2003,
103, 283 – 315; c) T. R. Younkin, E. F.
Connor, J. I. Henderson, S. K. Friedrich,
R. H. Grubbs, D. A. Bansleben, Science
2000, 287, 460 – 462.
¯
catalyst per hour. [c] Mn, number-average molecular weight measured by gel-permeation chromatog-
raphy with polystyrene standards. [d] Branching determined from 1HNMR spectroscopy.
chain analogues containing aryl substituents[16] clearly indi-
cates that the cyclophane ligand environment has a significant
impact on the catalytic properties.
In summary, we report here the first cyclophane-based
late-transition-metal catalyst that shows high activity and
thermal stability for ethylene polymerization. An efficient
route was developed for the synthesis of a novel cyclophane-
based a-diimine ligand. The NiII and PdII-a-diimine com-
plexes with the cyclophane ligand were successfully synthe-
sized and characterized. The NiII complex exhibits excellent
[4] a) L. K. Johnson, C. M. Killian, M. Brookhart, J. Am. Chem. Soc.
1995, 117, 6414 – 6415; b) L. K. Johnson, S. Mecking, M. Brook-
hart, J. Am. Chem. Soc. 1996, 118, 267 – 268.
[5] a) Z. Guan, P. M. Cotts, E. F. McCord, S. J. McLain, Science
1999, 283, 2059 – 2062; b) G. Chen, S. X. Ma, Z. Guan, J. Am.
Chem. Soc. 2003, 125, 6697 – 6704; c) Z. Guan, J. Am. Chem. Soc.
2002, 124, 5616 – 5617; d) Z. Guan, Chem. Eur. J. 2002, 8, 3086 –
3092; e) Z. Guan, J. Polym. Sci. Polym. Chem. Ed. 2003, 41,
3680 – 3692; f) Z. Guan, W. Marshall, Organometallics 2002, 21,
3580 – 3586.
[6] D. J. Tempel, L. K. Johnson, R. L. Huff, P. S. White, M.
Brookhart, J. Am. Chem. Soc. 2000, 122, 6686 – 6700.
[7] D. P. Gates, S. A. Svejda, E. Onate, C. M. Killian, L. K. Johnson,
P. S. White, M. Brookhart, Macromolecules 2000, 33, 2320 – 2334.
[8] T. Xie, K. B. McAuley, J. C. C. Hsu, D. W. Bacon Ind. Eng.
Chem. Res. 1994, 33, 449 – 479.
activity for ethylene polymerization with a productivity of
À1
42000 kg of PEmol
of NihÀ1. Both the NiII and PdII
catalysts show significantly higher thermal stability than the
acyclic analogs. The cyclophane catalysts also form PEs with
significantly higher branching density as compared to the
similar acyclic counterparts.[16] All these data suggest the
novel cyclophane ligand change the catalytic properties
significantly for the NiII and PdII complexes. It should be
noted that the NiII complex 1 has sufficiently high productivity
and thermal stability at temperature ranges suitable for gas-
phase olefin-polymerization processes. The MWs of the PEs
formed by complex 1 are also high and rather constant with
polymerization temperature. Encouraged by these results, we
are currently exploring a family of new cyclophane-based
ligands and investigating the polymerization properties of a
family of their transition-metal complexes.
[9] L. Deng, T. K. Woo, L. Cavallo, P. M. Margl, T. Ziegler, J. Am.
Chem. Soc. 1997, 119, 6177 – 6186.
[10] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18 – 29.
[11] The ring-closing metathesis afforded the bicyclic compound 8 as
the major product (80% yield) and a small amount of mono-
cyclic by-product with ring closing only on one side.
[12] The synthesis and detailed characterization of the ligand and
complexes will be reported separately (manuscript in prepara-
tion).
[13] E. V. Salo, Z. Guan, Organometallics 2003, 22, 5033 – 5046.
[14] Crystal data for 2: (C55H43ClN2Pd·CH2Cl2·1/2(C2H4Cl2): Mr =
¯
1008.17, T= 168(2) K, triclinic, space group P1, a = 10.4795(5),
b = 12.4398(6), c = 19.0436(9) , a = 90.2330(10), b =
90.1900(10), g = 111.5580(10)8, V= 2308.86(19) 3, Z = 2,
1calcd = 1.450 MgmÀ3 m = 0.675 mmÀ1
l = 0.71073 , 2qmax
,
,
=
Received: November 3, 2003 [Z53226]
26.378, 21767 measured reflections, 9220 [R(int) = 0.0318] inde-
pendent reflections, GOF on F2 = 1.057, R1 = 0.0388, wR2 =
0.0990 (I > 2s(I)), R1 = 0.0515, wR2 = 0.1056 (for all data),
largest difference peak and hole 0.549 and À0.862 eÀ3. The
intensity data were collected on Bruker CCD platform diffrac-
tometer. The structure was solved by direct methods
(SHELXTL) and refined on F2 by full-matrix least-squares
techniques. Hydrogen atoms were included by using a riding
model. There was one molecule of dichloromethane solvent
present per formula unit. There was another solvent present and
was assigned as dichloroethane. This solvent was disordered and
Keywords: cyclophanes · homogeneous catalysis · macrocyclic
ligands · nickel · olefin polymerization
.
[1] a) F. Diederich, Cyclophanes, Royal Society of Chemistry,
Cambridge, 1991; b) F. Vögtle, Cyclophane Chemistry, Wiley,
Chichester, 1999; c) S. H. Chiu, J. F. Stoddart, J. Am. Chem. Soc.
2002, 124, 4174 – 4175; d) C.-T. Chen, P. Gantzel, J. S. Siegel,
1824
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 1821 –1825