A R T I C L E S
Hanessian et al.
Scheme 3. Variation of the Lewis Acid and N-carbamoyl Group in
The Formation of the Octahydroindole Cores
Figure 3. N-Tethered (A) and C-tethered (B) intramolecular aza-Prins-N-
acyliminium ion type cyclizations.
There are ample examples of Lewis acid or protic acid
promoted intramolecular Prins reactions39 proceeding through
oxocarbenium ions for the formation of halo-oxacycles with
excellent stereocontrol.23,40 Seminal contributions by Specka-
mp,41 Overman,42 and more recently Rychnovsky23,43 and their
respective groups have demonstrated the utility of Prins or so-
called oxonia-Cope variants in natural product synthesis.
In contrast, there are no examples of analogous Lewis acid
promoted N-acyloxyiminium aza-Prins halocyclizations, whereby
an ω-olefinic carbon tether attached as an integral part of the
ring undergoes cyclization onto an incipient endocyclic N-
acyliminium ion with incorporation of a halogen in a 1-azabi-
cyclic ring system related to the octahydroindoles or decahy-
droquinolines (Figure 3B, X ) Cl, Br).44
As already shown in the synthesis of oscillarin, the method
is a novel way to prepare 6-halo-octahydroindole-2-carboxylic
acids.16 The alternative solvolytic method with formic acid34
would not be compatible because of the presence of the acid-
labile N-Boc group.
(32) For the synthesis of Lewis acid catalyzed halogenated azacyclic systems,
see (a) Udding, J. H.; Tuijp, C. J. M.; Hiemstra, H.; Speckamp, W. N. J.
Chem. Soc., Perkin Trans. 2 1992, 857. (b) Rutjes, F. P. J. T.; Hiemstra,
H.; Pirrung, F. O. H.; Speckamp, W. N. Tetrahedron 1993, 49, 10027. (c)
Li, W.; Hanau, C. E.; d′Avignon, A.; Moeller, K. D. J. Org. Chem. 1995,
60, 8155. For solvolytic reactions with formic acid, see (d) Demailly, G.;
Solladie´, G. J. Org. Chem. 1981, 36, 3102. (e) Hart, D. J.; Kanai, K.-I. J.
Am. Chem. Soc. 1983, 105, 1255. (f) Hart, D. J.; Hong, W. P. J. Org.
Chem. 1985, 50, 3670. (f) Cannizzo, L. F.; Grubbs, R. H. J. Org. Chem.
1985, 50, 2316. (g) Brosius, A. D.; Overman, L. E. J. Org. Chem. 1997,
62, 440. (h) Frank, K. E.; Aube´, J. Tetrahedron Lett. 1998, 39, 7239. (i)
Schoemaker, H. E.; Dijkink, J.; Speckamp, W. N. Tetrahedron 1978, 34,
163. (j) Dijkink, J.; Speckamp, W. N. Tetrahedron 1978, 34, 173. For ene-
type reactions, see (k) Ruggeri, R. B.; Hansen, H. M.; Heathcock, C. H. J.
Am. Chem. Soc. 1988, 110, 8734. (l) Tanner, D.; Hagberg, L. Tetrahedron
1998, 54, 7907. For an example of ester participation, see (m) Endoma,
M. A.; Butora, G.; Claeboe, C. D.; Hudlicky, T.; Abboud, K. A. Tetrahedron
Lett. 1997, 38, 8833.
(33) Fisher, M. J.; Overman, L. E. J. Org. Chem. 1990, 55, 1447.
(34) For examples involving solvolysis with formic acid, see (a) Oostveen, A.
R. C.; de Boer, J. J. J.; Speckamp, W. N. Heterocycles 1977, 7, 171. (b)
Schoemaker, H. E.; Kruk, C.; Speckamp, W. N. Tetrahedron Lett. 1979,
2437. For Lewis acids and alkene tethers, see (c) Melching, K. H.; Hiemstra,
H.; Klaver, W. J.; Speckamp, W. N. Tetrahedron Lett. 1986, 27, 4799. (d)
Esch, P. M.; Boska, I. M.; Hiemstra, H.; de Boer, R. F.; Speckamp, W. N.
Tetrahedron, 1991, 47, 4039. For solvolysis of allenic or acetylenic tethers,
see (e) Beyersbergen van Henegouwen, W. G.; Hiemstra, H. J. Org. Chem.
1997, 62, 8862. For applications to â-lactams, see (f) Metais, E.; Overman,
L. E.; Rodriguez, M. I.; Stearns, B. A. J. Org. Chem. 1997, 62, 9210.
(35) (a) Blechert, S. Synthesis 1989, 71. (b) Heimgartner, H.; Hansen, H.-J.;
Schmid, H. In Iminium Salts in Organic Chemistry, Part 2; Bo¨hme, H.,
Viche, J. J., Eds.; Wiley: New York, 1979; p 655-732. (c) Winterfeldt,
E. Curr. Topics Org. Chem. 1971, 16, 1971.
The Scope of the N-Acyloxyiminium Aza-Prins Halocar-
bocyclization. Having demonstrated the utility of an intramo-
lecular aza-Prins carbocyclization as a novel stereocontrolled
route to the 6-halo(or hydroxy)-2-carboxy-octahydroindole core
of oscillarin and related aeruginosins, we studied the scope and
limitations of related reactions.
First, we wished to study the influence of the carbamoyl group
as well as the nature of the Lewis acid on the stereoselectivity
of the halocarbocyclization. We were intrigued to find that in
contrast to the two Lewis acids used, the nature of the
N-carbamoyl group had little influence on the yield or stereo-
selection (Scheme 3). The single-crystal structure of the tert-
butyl ester analogue24 of the major product 18 is shown as an
Ortep diagram (Scheme 3). Clearly, SnBr4 was superior to SnCl4
(36) See, for example, (a) Overman, L. E.; Kakimoto, M. A. J. Am. Chem. Soc.
1979, 101, 1310. (b) Overman, L. E.; Jacobsen, E. J.; Doedens, R. J. J.
Org. Chem. 1983, 48, 3393. (c) Hart, D. J.; Yang, T. K. J. Org. Chem.
1985, 50, 235. (d) Ent, H.; de Koning, H.; Speckamp, W. N. J. Org. Chem.
1986, 51, 1687.
(37) For selected references, see (a) Dobbs, A. P.; Guesne´, S. J. J.; Hursthouse,
M. B.; Coles, S. J. Synlett 2003, 1740. (b) Sun, P.; Sun, C.; Weinreb, S. N.
J. Org. Chem. 2002, 67, 4337. (c) Wo¨lfling, J.; Frank, E.; Schneider, G.;
Bes, M. T.; Tietze, L. F. Synlett 1998, 1205. (d) Kercher, T.; Livinghouse,
T. J. Am. Chem. Soc. 1996, 118, 4200. (e) Gelas-Mialhe, Y.; Gramain,
J.-C.; Hajouji, H.; Remuson, R. Heterocycles 1992, 34, 37. (f) Tietze, L.
F.; Wu¨nsch, J. R. Angew. Chem., Int. Ed. Engl. 1991, 30, 1697. (g)
Overman, L. E.; Sharp, M. J. Tetrahedron Lett. 1988, 29, 901. (h) Kano,
S.; Yokomatsu, T.; Yuasav, Y.; Shibuya, S. Heterocycles 1986, 24, 621.
(i) Shono, T.; Matsumura, Y.; Uchida, K.; Kobayashi, H. J. Org. Chem.
1985, 50, 3243. (j) Hiemstra, H.; Fortgens, H. P.; Speckamp, W. N.
Tetrahedron Lett. 1985, 26, 3155. (k) For reviews see Fleming, I.; Barbero,
A.; Walter, D. Chem. ReV. 1997, 97, 2063. Langkopf, E.; Schinzer, D.
Chem. ReV. 1995, 95, 1375.
(40) For recent examples of halooxacycles via Prins cyclizations, see (a) Hart,
D. J.; Bennet, C. E. Org. Lett. 2003, 5, 1499. (b) Jaber, J. J.; Mitsui, K.;
Rychnovsky, S. D. J. Org. Chem. 2001, 66, 4679. (c) Al-Mutairi, E. H.;
Crosby, S. R.; Darzi, J.; Harding, J. R.; Hughes, R. A.; King, C. D.;
Simpson, T. J.; Smith, R. W.; Wills, C. L. J. Chem. Soc., Chem. Commun.
2001, 835. (d) Cloninger, M. J.; Overman, L. E. J. Am. Chem. Soc. 1999,
121, 1092. (e) Yang, X.-F.; Li, C. J. Tetrahedron Lett. 2000, 41, 1321. (f)
Marko´, I. E.; Chelle´, F. Tetrahedron Lett. 1997, 38, 2895. (g) Perron-Sierra,
F.; Promo, M. A.; Martin, V. A.; Albizati, K. F. J. Org. Chem. 1991, 56,
6188. (h) Coppi, L.; Ricci, A.; Taddei, M. J. Org. Chem. 1988, 53, 911.
(i) Winstead, R. C.; Simpson, T. H.; Lock, G. A.; Schiawelli, M. D.;
Thompson, D. M. J. Org. Chem. 1986, 51, 257 and references therein.
(41) Lolkema, L. D. M.; Hiemstra, H.; Semeyn, C.; Speckamp, W. N.
Tetrahedron 1994, 50, 7115.
(38) For early examples, see: (a) Overman, L. E.; Mendelson, L. T. J. Am.
Chem. Soc. 1981, 103, 5579. See also ref 32c,e.
(42) Blumenkopf, T. A.; Overman, L. E. Chem. ReV. 1986, 86, 857.
(43) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem. 2001, 66, 4679.
(44) For related examples, see Wo¨lfling, J.; Frank, E.; Schneider, G.; Bes, M.
T.; Tietze, L. Synlett 1998, 1205. See also refs 34d, 34f, 37i.
(39) Snider, B. B. In ComprehensiVe Organic Chemistry; Trost, B. M., Fleming,
I., Heathcock, C. H., Eds.; Pergamon: New York, 1991; Z, p 523.
9
6068 J. AM. CHEM. SOC. VOL. 126, NO. 19, 2004