Scheme 3: Plausible mechanism for the formation of the target molecule.
Relatively modest to low yields and the requirement of comparatively high reaction temperature, prompted us to study the
putative aldiimine intermediate by DFT calculations. For this purpose the structure of the intermediate was optimized with the
Gaussian 09 [DFT/cam-b3lyp/6-311++g(d,p)]. The optimized geometry was employed to calculate the Mulliken charge
distribution, the HOMO and LUMO energy values [See SI for details]. The charge distribution showed comparable charges on
the two reaction centers, which in our opinion rationalize the modest to low yields seen in the reaction.
Conclusions
In summary, we have developed a direct iron-catalyzed route involving functionalization of C-3 position of flavones for the
2
synthesis of 6-substituted chromeno[3,2-c]quinolin-7-one. The developed method helps in coupling two Csp centers bearing
similar charges and works with easily available aromatic aldehydes having electron rich and electron deficient substituents.
Given the biological importance of flavones and quinolines, we feel that the devised method will find a lot of applications in the
domain of medicinal chemistry. Additionally, since many chromone/flavone based natural products are C-3 substituted, the
possibility of synthesizing these molecules without the aid of any additional activation or pre-functionalization step will prove to
be an attractive feature.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
TUK acknowledges BITS-Pilani for PhD fellowship. TUK and AB are grateful on behalf of Department of Chemistry,
BITS-Pilani Hyderabad campus to DST-India for FIST support (SR/FST/CSI-240/2012).
Notes and references
1. (a) P. Yadav, B. Parshad, P. Manchanda and S.K. Sharma, Curr. Top. Med. Chem. 2014, 14, 2552-2575. doi:
10.2174/15680266141203141317 (b) C. Dyrager, L.N. Mollers, L.K. Kjall, J.P. Alao, P. Diner, F.K. Wallner, P. Sunnerhagen
and M. Grotli, J. Med. Chem. 2011, 54, 7427-7431. doi: 10.1021/jm200818j (c) C.F.M. Silva, D.C.G.A. Pinto and A.M.S. Silva,
Chem. Med. Chem. 2016, 11, 2252-2260. doi: 10.1002/cmdc.201600359
2. (a) B.L. Wei, J.R. Weng, P.H. Chiu, C.F. Hung, J.P. Wang and C.N. Lin, J. Agric. Food Chem. 2005, 53, 3867-3871. doi:
10.1021/jf04787 (b) Z.P. Zheng, K.W. Cheng, J.T.K. To, H. Li and M. Wang, Mol. Nutr. Food. Res. 2008, 52, 1530-1538. doi:
10.1002/mnfr.200700481 (c) K. Likhitwitayawuid, B. Supudompol, B. Sritularak, V. Lipipun, K. Rapp and R.F. Schinazi,
10.1016/s0163-7258(02)00298-x
3. (a) F. Ferrari, I. Messana and M. C. de Araujo, Planta Med.1989, 55, 70-72. doi: 10.1055/s-2006-961830 (b) K.
Likhitwitayawuid, B. Sritularak and W. De-Eknamkul, Planta Med. 2000, 66, 275-277. doi: 10.1055/s-2000-8656
4. (a) M. Akula, Y. Thigulla, C. Davis, M. Jha and A Bhattacharya, Org. Biomol. Chem., 2015, 13, 2600-2605.
10.1039C4OBO2224F (b) Y. Thigulla, M. Akula, P. Trivedi, B. Ghosh, M. Jha and A. Bhattacharya, Org. Biomol. Chem., 2016,
14, 876-883. doi: 10.1039/C5OB01650A
5. (a) A.N.M.B.R.C.S. Costa, F.M. Dean, M.A. Jones, D.A. Smith and R.S. Varma, Chem. Commun., 1980, 1224-1226. doi:
10.1039/C39800001224 (b) A.N.M.B.R.C.S. Costa, F.M. Dean, M.A. Jones and R.S. Varma, J. Chem. Soc., Perkin Trans. 1,
1985, 799-808. doi: 10.1039P19850000799
6. (a) S.G. Davies, B.E. Mobbs and C.J. Goodwin, J. Chem. Soc., Perkin Trans. 1, 1987,
2597-2604. doi:
10.1039/P19870002597 (b) K. Tatsuta, S. Kasai, Y. Amano, T. Yamaguchi, M. Seki and S. Hosokawa, Chem. Lett.., 2007, 36,