Tassin et al.
mGlu7 Modulates the Thalamic Network
Glykys, J., and Mody, I. (2007). Activation of GABA receptors: views from outside
the synaptic cleft. Neuron 56, 763–770. doi: 10.1016/j.neuron.2007.11.002
Goddyn, H., Callaerts-Vegh, Z., Stroobants, S., Dirikx, T., Vansteenwegen, D.,
Hermans, D., et al. (2008). Deficits in acquisition and extinction of conditioned
responses in mGluR7 knockout mice. Neurobiol. Learn. Mem. 90, 103–111. doi:
10.1016/j.nlm.2008.01.001
Goodwin, H., Curran, N., Chioza, B., Blower, J., Nashef, L., Asherson, P., et al.
(2000). No association found between polymorphisms in genes encoding
mGluR7 and mGluR8 and idiopathic generalised epilepsy in a case control
study. Epilepsy Res. 39, 27–31. doi: 10.1016/S0920-1211(99)00096-0
Hamilton, S. P. (2011). A new lead from genetic studies in depressed siblings:
assessing studies of chromosome 3. Am. J. Psychiatry 168, 783–789. doi:
10.1176/appi.ajp.2011.11060835
Fields, eds E. Niedermeyer and F. Lopes da Silva (Baltimore, MD: Lippincott
Williams & Wilkins), 153–191.
Niswender, C. M., Johnson, K. A., Miller, N. R., Ayala, J. E., Luo, Q., Williams, R.,
et al. (2010). Context-dependent pharmacology exhibited by negative allosteric
modulators of metabotropic glutamate receptor 7. Mol. Pharmacol. 77, 459–
468. doi: 10.1124/mol.109.058768
O’Connor, R. M., Finger, B. C., Flor, P. J., and Cryan, J. F. (2010). Metabotropic
glutamate receptor 7: at the interface of cognition and emotion. Eur. J.
Pharmacol. 639, 123–131. doi: 10.1016/j.ejphar.2010.02.059
Ohtsuki, T., Koga, M., Ishiguro, H., Horiuchi, Y., Arai, M., Niizato, K., et al.
(2008). A polymorphism of the metabotropic glutamate receptor mGluR7
(GRM7) gene is associated with schizophrenia. Schizophr. Res. 101, 9–16. doi:
10.1016/j.schres.2008.01.027
Huguenard, J. R., and McCormick, D. A. (2007). Thalamic synchrony and dynamic
regulation of global forebrain oscillations. Trends Neurosci. 30, 350–356. doi:
10.1016/j.tins.2007.05.007
Jia, F., Pignataro, L., Schofield, C. M., Yue, M., Harrison, N. L., and
Goldstein, P. A. (2005). An extrasynaptic GABAA receptor mediates tonic
inhibition in thalamic VB neurons. J. Neurophysiol. 94, 4491–4501. doi:
10.1152/jn.00421.2005
Park, S., Jung, S.-W., Kim, B.-N., Cho, S.-C., Shin, M.-S., Kim, J.-W., et al. (2013).
Association between the GRM7 rs3792452 polymorphism and attention deficit
hyperacitiveity disorder in a Korean sample. Behav. Brain Funct. 9, 1. doi:
10.1186/1744-9081-9-1
Pelkey, K. A., Lavezzari, G., Racca, C., Roche, K. W., and Mcbain, C. J.
(2005). mGluR7 is a metaplastic switch controlling bidirectional plasticity of
feedforward inhibition. Neuron 46, 89–102. doi: 10.1016/j.neuron.2005.02.011
Pelkey, K. A., Topolnik, L., Yuan, X.-Q., Lacaille, J.-C., and Mcbain, C. J.
(2008). State-dependent cAMP sensitivity of presynaptic function underlies
metaplasticity in a hippocampal feedforward inhibitory circuit. Neuron 60,
980–987. doi: 10.1016/j.neuron.2008.11.018
Perroy, J., El Far, O., Bertaso, F., Pin, J., Betz, H., Bockaert, J., et al. (2002). PICK1
is required for the control of synaptic transmission by the metabotropic
glutamate receptor 7. EMBO J. 21, 2990–2999. doi: 10.1093/emboj/
cdf313
Perroy, J., Prezeau, L., De Waard, M., Shigemoto, R., Bockaert, J., and Fagni, L.
(2000). Selective blockade of P/Q-type calcium channels by the metabotropic
glutamate receptor type 7 involves a phospholipase C pathway in neurons.
J. Neurosci. 20, 7896–7904.
Pinault, D. (2004). The thalamic reticular nucleus: structure, function and
concept. Brain Res. Brain Res. Rev. 46, 1–31. doi: 10.1016/j.brainresrev.2004.
04.008
Pinault, D., and Deschenes, M. (1998). Projection and innervation patterns
of individual thalamic reticular axons in the thalamus of the adult rat: a
three-dimensional, graphic, and morphometric analysis. J. Comp. Neurol.
391, 180–203. doi: 10.1002/(SICI)1096-9861(19980209)391:2<180::AID-
CNE3>3.0.CO;2-Z
Porter, J. T., Johnson, C. K., and Agmon, A. (2001). Diverse types of interneurons
generate thalamus-evoked feedforward inhibition in the mouse barrel cortex.
J. Neurosci. 21, 2699–2710.
Presset, M., Mailhol, D., Coquerel, Y., and Rodriguez, J. (2011). Diazo-transfer
reactions to 1,3-Dicarbonyl Compounds with Tosyl azide. Synthesis 2011,
2549–2552. doi: 10.1055/s-0030-1260107
Kalinichev, M., Rouillier, M., Girard, F., Royer-Urios, I., Bournique, B., Finn, T.,
et al. (2013). ADX71743, a potent and selective negative allosteric modulator
of metabotropic glutamate receptor 7: in vitro and in vivo characterization.
J. Pharmacol. Exp. Ther. 344, 624–636. doi: 10.1124/jpet.112.200915
Kallstrom, K., Hedberg, C., Brandt, P., Bayer, A., and Andersson Pher, G. (2004).
Rationally designed ligands for asymmetric iridium-catalyzed hydrogenation of
olefins. J. Am. Chem. Soc. 126, 14308–14309. doi: 10.1021/ja0464241
Kammermeier, P. J. (2015). Constitutive activity of metabotropic glutamate
receptor 7. BMC Neurosci. 16:17. doi: 10.1186/s12868-015-0154-6
Keck, T. M., Zou, M. F., Zhang, P., Rutledge, R. P., and Newman, A. H.
(2012). Metabotropic glutamate receptor 5 negative allosteric modulators as
novel tools for in vivo investigation. ACS Med. Chem. Lett. 3, 544–549. doi:
10.1021/ml3000726
Kinoshita, A., Shigemoto, R., Ohishi, H., Van Der Putten, H., and Mizuno, N.
(1998). Immunohistochemical localization of metabotropic glutamate
receptors, mGluR7a and mGluR7b, in the central nervous system of the adult
rat and mouse: a light and electron microscopic study. J. Comp. Neurol.
393, 332–352. doi: 10.1002/(SICI)1096-9861(19980413)393:3<332::AID-
CNE6>3.0.CO;2-2
Klar, R., Walker, A. G., Ghose, D., Grueter, B. A., Engers, D. W., Hopkins, C. R.,
et al. (2015). Activation of metabotropic glutamate receptor 7 is required for
induction of long-term potentiation at SC-CA1 synapses in the hippocampus.
J. Neurosci. 35, 7600–7615. doi: 10.1523/JNEUROSCI.4543-14.2015
Knutsen, P. M., Biess, A., and Ahissar, E. (2008). Vibrissal kinematics in 3D: tight
coupling of azimuth, elevation, and torsion across different whisking modes.
Neuron 59, 35–42. doi: 10.1016/j.neuron.2008.05.013
Kyuyoung, C. L., and Huguenard, J. R. (2014). Modulation of short-term plasticity
in the corticothalamic circuit by group III metabotropic glutamate receptors.
J. Neurosci. 34, 675–687. doi: 10.1523/JNEUROSCI.1477-13.2014
Meye, F. J., Ramakers, G. M., and Adan, R. A. (2014). The vital role of constitutive
GPCR activity in the mesolimbic dopamine system. Transl. Psychiatry 4:e361.
doi: 10.1038/tp.2013.130
Millán, C., Luján, R., Shigemoto, R., and Sánchez-Prieto, J. (2002). The inhibition
of glutamate release by metabotropic glutamate receptor 7 affects both [Ca2+]
c and cAMP: evidence for a strong reduction of Ca2+ entry in single nerve
terminals. J. Biol. Chem. 277, 14092–14101. doi: 10.1074/jbc.M109044200
Mistry, R. B., Isaac, J. T. R., and Crabtree, J. W. (2008). Two differential
frequency-dependent mechanisms regulating tonic firing of thalamic reticular
neurons. Eur. J. Neurosci. 27, 2643–2656. doi: 10.1111/j.1460-9568.2008.
06246.x
Mody, I. (2001). Distinguishing between GABAA receptors responsible
for tonic and phasic conductances. Neurochem. Res. 26, 907–913. doi:
10.1023/A:1012376215967
Morisset, S., Rouleau, A., Ligneau, X., Gbahou, F., Tardivel-Lacombe, J., Stark, H.,
et al. (2000). High constitutive activity of native H3 receptors regulates
histamine neurons in brain. Nature 408, 860–864. doi: 10.1038/35048583
Niedermeyer, E., and Lopes Da Silva, F. (1993). “Sleep and EEG,” in
Electroencephalography, Basic Principles, Clinical Applications, and Related
Prezeau, L., Gomeza, J., Ahern, S., Mary, S., Galvez, T., Bockaert, J., et al. (1996).
Changes in the carboxyl-terminal domain of metabotropic glutamate receptor
1 by alternative splicing generate receptors with differing agonist-independent
activity. Mol. Pharmacol. 49, 422–429.
Reichova, I., and Sherman, S. M. (2004). Somatosensory corticothalamic
projections: distinguishing drivers from modulators. J. Neurophysiol. 92, 2185–
2197. doi: 10.1152/jn.00322.2004
Rodriguez, A. L., Grier, M. D., Jones, C. K., Herman, E. J., Kane, A. S.,
Smith, R. L., et al. (2010). Discovery of novel allosteric modulators of
metabotropic glutamate receptor subtype 5 reveals chemical and functional
diversity and in vivo activity in rat behavioral models of anxiolytic and
antipsychotic activity. Mol. Pharmacol. 78, 1105–1123. doi: 10.1124/mol.110.
067207
Sansig, G., Bushell, T. J., Clarke, V. R., Rozov, A., Burnashev, N., Portet, C., et al.
(2001). Increased seizure susceptibility in mice lacking metabotropic glutamate
receptor 7. J. Neurosci. 21, 8734–8745.
Schoepp, D. D., Jane, D. E., and Monn, J. A. (1999). Pharmacological agents
acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38,
1431–1476. doi: 10.1016/S0028-3908(99)00092-1
Schrader, L., and Tasker, J. (1997). Presynaptic modulation by metabotropic
glutamate receptors of excitatory and inhibitory synaptic inputs to
hypothalamic magnocellular neurons. J. Neurophysiol. 77, 527–527.
18