8.01 (1H, d, J 8.3, 1-H), 8.96 (1H, d, J 7.9, 8-H), 9.06 (1H, d, J
7.9, 4-H); dC(d6-DMSO, 125 MHz) 34.1 (CH2), 38.8 (CH2), 41.0
(CH2), 44.6 (CH2), 56.0 (OMe), 60.0 (CH), 60.7 (CH), 68.0 (C),
110.1 (CH), 111.2 (CH), 114.9 (CH), 116.4 (C), 116.8 (C), 119.1
(C), 119.8 (C), 121.6 (CH), 122.0 (CH), 122.2 (C), 122.5 (C),
125.4 (CH), 125.5 (CH), 125.7 (CH), 127.1 (CH), 127.9 (CH),
128.2 (CH), 128.5 (CH), 128.9 (C), 129.6 (CH), 129.7 (CH),
130.1 (C), 130.4 (C), 131.9 (2CH), 136.0 (C), 136.9 (C), 140.8
(C), 141.9 (C), 159.5 (C), 169.9 (CO), 170.1 (CO), 216.8 (CO);
m/z (FAB+) 706 (M+ + H, 6%), 705 (M+, 11), 598 (6), 121 (27),
107 (26).
18 For an excellent review of cyclic sulfate chemistry, see: H.-S. Byun,
L. He and R. Bittman, Tetrahedron, 2000, 56, 7051.
19 This dihydroxylation appears in a patent, see: H. Roder, T. B.
Lowinger, D. R. Brittelli and M. C. VanZandt, US Pat. 6,013,646,
Jan 11, 2000.
20 Y. Gao and K. B. Sharpless, J. Am. Chem. Soc., 1988, 110, 7538.
21 The use of NaH as base seems more usual, but was ineffective in
our system, see for example: (a) T. J. Tewson and M. Soderlind,
J. Carbohydr. Chem., 1985, 4, 529; (b) S. Hanessian and J.-M. Vatele,
Tetrahedron Lett., 1981, 22, 3579.
22 Cyclic sulfate ring opening by heating in neat amine has been used
previously, see for example: R. Hirsenkorn, Tetrahedron Lett., 1990,
31, 7591.
23 J. S. Yadav, C. Madhuri, B. V. S. Reddy, G. S. K. K. Reddy and G.
Sabitha, Synth. Commun., 2002, 32, 2771.
24 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004.
25 K. Makino and Y. Ichikawa, Tetrahedron Lett., 1998, 39, 8245.
26 A. Kamal, K. V. Ramana, H. B. Ankati and A. V. Ramana,
Tetrahedron Lett., 2002, 43, 6861.
Acknowledgements
We gratefully acknowledge support for this work from The
University of Nottingham, Eli Lilly and Company, Indianapolis,
and NADAG, Munich.
27 Y. Ito, S. Fujii and T. Saegusa, J. Org. Chem., 1976, 41, 2073.
28 (a) H. O. House, E. J. Grubbs and W. F. Gannon, J. Am. Chem.
Soc., 1960, 82, 4099; (b) J. Furukawa, N. Kawabata and J. Nishimura,
Tetrahedron, 1968, 24, 53; (c) Y. Mori, K. Yaegashi and H. Furukawa,
Tetrahedron, 1997, 53, 12917; (d) G. R. Krow, Tetrahedron, 1987, 43,
3.
References
1 For chemically-orientated reviews of the indolocarbazole area, see:
(a) H.-J. Kno¨lker and K. R. Reddy, Chem. Rev., 2002, 102, 4303; (b) J.
Bergman, T. Janosik and N. Wahlstro¨m, Adv. Heterocycl. Chem.,
2001, 80, 1. For more recent contributions, and leading references
to biological areas, see:; (c) T. L. Schneider, R. S. Mathew, K. P.
Price, K. Tamaki, J. L. Wood and A. Schepartz, Org. Lett., 2005, 7,
1695; (d) M. M. Faul, T. A. Engler, K. A. Sullivan, J. L. Grutsch,
M. T. Clayton, M. J. Martinelli, J. M. Pawlak, M. LeTourneau, D. S.
Coffey, S. W. Pederson, S. P. Kolis, K. Furness, S. Malhotra, R. S.
Al-awar and J. E. Ray, J. Org. Chem., 2004, 69, 2967; (e) G. Zhu, S. E.
Conner, X. Zhou, H.-K. Chan, C. Shih, T. A. Engler, R. S. Al-awar,
H. B. Brooks, S. A. Watkins, C. D. Spencer, R. M. Schultz, J. A.
Dempsey, E. L. Considine, B. R. Patel, C. A. Ogg, V. Vasudevan and
M. L. Lytle, Bioorg. Med. Chem. Lett., 2004, 14, 3057; (f) L. Zhang,
P. Carroll and E. Meggers, Org. Lett., 2004, 6, 521; (g) S. Messaoudi,
F. Anizon, B. Pfeiffer, R. Golsteyn and M. Prudhomme, Tetrahedron
Lett., 2004, 45, 4643.
29 K. Muruoka, A. Concepcion and A. Yamamoto, Synthesis, 1994,
1283.
30 (a) J. Nishimura, J. Furukawa, N. Kawabata and M. Kitayama,
Tetrahedron, 1971, 27, 1799; (b) S. E. Denmark and J. P. Edwards,
J. Org. Chem., 1991, 56, 6974.
31 A. Streitwieser, Y.-J. Kim and D. Z.-R. Wang, Org. Lett., 2001, 3,
2599.
32 (a) H. C. Brown, P. K. Jadhav and A. K. Mandal, Tetrahedron, 1981,
37, 3547; (b) H. C. Brown and P. V. Ramachandran, J. Organomet.
Chem., 1995, 500, 1.
33 H. C. Brown, M. C. Desai and P. K. Jadhav, J. Org. Chem., 1982, 47,
5065.
34 T. Hayashi, Acc. Chem. Res., 2000, 33, 354.
35 (a) M. Carpintero, C. Jaramillo and A. Ferna´ndez-Mayoralas,
Eur. J. Org. Chem., 2000, 1285; (b) see also: T. Gourlain, A.
Wadouachi and D. Beaupere, Tetrahedron Lett., 2000, 41, 659.
36 For asymmetric reactions using chiral alkoxides, see for example:
(a) M. Amadji, J. Vadecard, J. C. Plaquevent, L. Duhamel and P.
Duhamel, J. Am. Chem. Soc., 1996, 118, 12483; (b) C. D. Jones and
N. S. Simpkins, Tetrahedron Lett., 1998, 39, 1023.
2 S. Omura, Y. Iwai, A. Hirano, A. Nakagawa, J. Awaya, H. Tsuchiya,
Y. Takahashi and R. Masuma, J. Antibiot., 1977, 30, 275.
3 (a) M. Sezaki, T. Sasaki, T. Nakazawa, U. Takeda, M. Iwata,
T. Watanabe, M. Koyama, F. Kai, T. Shomura and M. Kojima,
J. Antibiot., 1985, 38, 1437; (b) H. Kase, K. Iwahashi and Y. Matuda,
J. Antibiot., 1986, 39, 1059.
4 (a) D. E. Nettleton, T. W. Doyle, B. Krishnan, G. K. Matsumoto
and J. Clardy, Tetrahedron Lett., 1985, 26, 4011; (b) Y. Yamashita,
N. Fujii, C. Murkata, T. Ashizawa, M. Okabe and H. Nakano,
Biochemistry, 1992, 31, 12069.
37 For a review of chiral lithium amide base chemistry, see: (a) P.
O’Brien, J. Chem. Soc., Perkin Trans. 1, 1998, 1439; (b) For a special
journal edition dedicated to chiral lithium amide base chemistry, see:
P. O’Brien (Symposium in Print guest editor), Tetrahedron, 2002,
58(23), 4567–4733; (c) For our most recent chiral lithium amide
chemistry, see: J. D. Bennett, P. L. Pickering and N. S. Simpkins,
Chem. Commun., 2004, 1392.
38 J. B. McAlpine, J. P. Karwowski, M. Jackson, M. M. Mullaly, J. E.
Hochlowski, U. Premachandran and J. Burres, J. Antibiot., 1994, 47,
281.
39 S. Wakusawa, K. Inoko, K. Miyamoto, S. Kajita, T. Hasegawa, K.
Hariyama and M. Koyama, J. Antibiot., 1993, 46, 353.
40 (a) H. J. Mackay and C. J. Twelves, Endocr.–Relat. Cancer, 2003, 10,
389; (b) A. J. Bridges, Chem. Rev., 2001, 101, 2541. See also ref. 8.
41 (a) D. R. Knighton, J. Zheng, L. F. Teneyck, V. A. Ashford, N. G.
Xuong, S. S. Taylor and J. M. Sowadski, Science, 1991, 253, 407;
(b) W. T. Miller, Nat. Struct. Biol., 2001, 8, 16.
42 (a) K. Tamaki, J. B. Shotwell, R. D. White, I. Drutu, D. T. Petsch, T. V.
Nheu, Y. HiroKawa, H. Murata and J. L. Wood, Org. Lett., 2001,
3, 1689; (b) J. L. Wood, D. J. Petsch, B. M. Stoltz, E. M. Hawkins,
D. Elbaum and D. R. Stover, Synthesis, 1999, 1529; (c) K. Tamaki,
E. W. D. Huntsman, D. T. Petsch and J. L. Wood, Tetrahedron Lett.,
2002, 43, 379. See also:; (d) T. L. Underiner, J. P. Mallamo and J.
Singh, J. Org. Chem., 2002, 67, 3235; (e) C. Murakata, M. Kaneko, G.
Gessner, T. S. Angeles, M. A. Ator, T. M. O’Kane, B. A. W. McKenna,
B. A. Thomas, J. R. Mathiasen, M. S. Saporito, D. Bozyczko-Coyne
and R. L. Hudkins, Bioorg. Med. Chem. Lett., 2002, 12, 147; (f) D. E.
Gringrich and R. L. Hudkins, Bioorg. Med. Chem. Lett., 2002, 12,
2829.
5 M. Prudhomme, Curr. Pharm. Des., 1997, 3, 265.
6 (a) S. Nakanishi, Y. Matsuda, K. Iwahashi and H. Kase, J. Antibiot.,
1986, 39, 1066; (b) T. Yasuzawa, T. Iida, M. Yoshida, N. Hirayama,
M. Takahashi, K. Shirahata and H. Sano, J. Antibiot., 1986, 39, 1072.
7 (a) M. Prudhomme, Eur. J. Med. Chem., 2003, 38, 123; (b) M.
Prudhomme, Curr. Med. Chem., 2000, 7, 1189.
8 P. Cohen, Nat. Rev. Drug Discovery, 2002, 1, 309.
9 For key synthetic contributions in the K-252a area, see: (a) J. L.
Wood, B. M. Stoltz, H.-J. Dietrich, D. A. Pflum and D. T. Petsch,
J. Am. Chem. Soc., 1997, 119, 9641; (b) J. L. Wood, B. M. Stoltz,
S. N. Goodman and K. Onwueme, J. Am. Chem. Soc., 1997, 119,
9652; (c) T. B. Lowinger, J. Chu and P. L. Spence, Tetrahedron Lett.,
1995, 36, 8383; (d) Y. Kobayashi, T. Fujimoto and T. Fukuyama,
J. Am. Chem. Soc., 1999, 121, 6501.
10 D. A. Riley, N. S. Simpkins and D. Moffat, Tetrahedron Lett., 1999,
40, 3929.
11 C. J. Nichols and N. S. Simpkins, Tetrahedron Lett., 2004, 45, 7469.
12 S. J. Danishefsky, J. J. Masters, W. Byoung, J. T. Link, L. B. Snyder,
T. U. Magee, D. K. Jung, R. C. A. Isaacs, W. G. Bornmann, C. A.
Alaimo, C. A. Coburn and M. J. DiGrandi, J. Am. Chem. Soc., 1996,
118, 2849.
13 R. Gigg and R. Conant, J. Chem. Soc., Chem. Commun., 1983, 465.
14 M. Brenner, H. Rexhausen, B. Steffan and W. Steglich, Tetrahedron,
1988, 44, 2887.
15 (a) W. K. Anderson and T. Veysoglu, J. Org. Chem., 1973, 38, 2267;
(b) P. A. Bartlett and L. A. McQuaid, J. Am. Chem. Soc., 1984, 106,
7854.
43 A. M. Lawrie, M. E. M. Noble, P. Tunnah, N. R. Brown, L. N.
Johnson and J. A. Endicott, Nat. Struct. Biol., 1997, 4, 796.
44 L. Prade, R. A. Engh, A. Girod, V. Kinzel, R. Huber and D.
Bossenmeyer, Structure, 1997, 5, 1627.
16 D. R. Dalton, V. P. Dutta and D. C. Jones, J. Am. Chem. Soc., 1968,
90, 5498.
17 For a recent example with leading references, see: J. Boruwa, J. C.
Borah, B. Kalita and N. C. Barua, Tetrahedron Lett., 2004, 45, 7355.
45 N. Scheiring, S. Knapp, M. Marconi, M. M. Flocco, J. Cui, R. Perego,
L. Rusconi and C. Cristiani, Proc. Natl. Acad. Sci. USA, 2003, 12654.
2 9 7 4
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 9 5 3 – 2 9 7 5