L. C. Dias et al. / Tetrahedron Letters 44 (2003) 6861–6866
6865
The examples presented in this work show that the
levels of p-facial selection are dependent on the abso-
lute stereochemistries of the aldehydes as well as of the
allyltrichlorostannane.
5. Dias, L. C.; Meira, P. R. R.; Ferreira, E. Org. Lett. 1999,
1, 1335.
6. Dias, L. C.; Meira, P. R. R. Synlett 2000, 37.
7. Dias, L. C.; Ferreira, E. Tetrahedron Lett. 2001, 42, 7159.
8. Dias, L. C.; Ferreira, A. A.; Diaz, G. Synlett 2002, 1845.
9. Dias, L. C.; Diaz, G.; Ferreira, A. A.; Meira, P. R. R.;
Ferreira, E. Synthesis 2003, 4, 603.
10. We have recently described a very efficient and syntheti-
cally useful 1,4-anti-1,5-anti boron-mediated aldol reac-
tion of chiral a-methyl-b-alkoxy methyl ketone with
achiral aldehydes: Dias, L. C.; Bau´, R. Z.; de Sousa, M.
A.; Zukerman-Schpector, J. Org. Lett. 2002, 4, 4325.
11. (a) Bunnelle, W. H.; Narayanan, B. A. Tetrahedron Lett.
1987, 28, 6261; (b) Mickelson, T. J.; Koviach, J. L.;
Forsyth, C. J. J. Org. Chem. 1996, 61, 9617.
The results from these experiments suggest that the
stereochemical relationships between the a and b alde-
hyde substituents may confer either a reinforcing
(matched) or opposing (mismatched) facial bias on the
carbonyl moiety. In this complex scenario, the chiral
allyltrichlorostannane may adopt either a reinforcing or
nonreinforcing relationship. One possible reason for
this result could be attributed to the involvement of
energetically similar chair and twist-boat pericyclic
transition states which lead to diastereomeric product
formation. Another possibility to consider in these reac-
tions is that nonbonded interactions between the allyl-
trichlorostannane and aldehyde a substituents may not
be significant in pericyclic transition states leading to
either Felkin or anti-Felkin addition products.20 We
believe that this chemistry is truly significant in the
context of acyclic diastereoselection and will prove to
be useful in the synthesis of more complex molecules
like polyacetate and polypropionate-derived natural
products.21,22
12. (a) Gage, J. R.; Evans, D. A. Org. Synth. 1990, 68, 83; (b)
Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc.
1981, 103, 2127; (c) Evans, D. A.; Taber, T. R. Tetra-
hedron Lett. 1980, 21, 4675.
13. Evans, D. A.; Downey, C. W.; Shaw, J. T.; Tedrow, J. S.
Org. Lett. 2002, 4, 1127.
14. Since the diastereoselectivity of the reactions of these
aldehydes with allyltrichlorostannanes 3 and 6 depends
on their enantiomeric purity, crude aldehydes were used
in all of the studies described in the text.
15. Schreiber, S. L.; Shambayati, S.; Blake, J. F.; Wierschke,
S. G.; Jorgensen, W. L. J. Am. Chem. Soc. 1990, 112,
697.
16. Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J.
Am. Chem. Soc. 1996, 118, 4322.
Acknowledgements
17. (a) The ratios were determined by 1H and 13C NMR
spectroscopic analysis of the purified product mixture; (b)
The syn and anti-products could not be separated and
were characterized as mixtures. We have been able to
separate both syn and anti diols originating from homoal-
lylic alcohols 18 and 24 and they were characterized
individually; (c) All of the percentage values represent
data obtained from three individual trials.
We are grateful to FAEP-UNICAMP, FAPESP and
CNPq (Brazil) for financial support. We also thank
Professor Carol H. Collins, from IQ-UNICAMP, for
helpful suggestions about English grammar and style.
References
18. Having confirmed the relative (syn or anti ) relationship
between allylsilane derived stereogenic centers, the abso-
lute stereochemistry of the newly formed hydroxyl sub-
stituent was determined by ascertaining its relationship to
the stereocenter originating from the aldehydes, which
are of known configuration.
19. (a) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett.
1990, 31, 945; (b) Evans, D. A.; Rieger, D. L.; Gage, J.
R. Tetrahedron Lett. 1990, 31, 7099; (c) Rychnovsky, S.
D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res.
1998, 31, 9.
20. (a) Che´rest, M.; Felkin, H.; Prudent, N. Tetrahedron
Lett. 1968, 18, 2199; (b) Anh, N. T.; Eisenstein, O. Nouv.
J. Chem. 1977, 1, 61; (c) We use the ‘Felkin’ descriptor to
refer to the diastereomer predicted by the Felkin–Ahn
paradigm. The ‘anti-Felkin’ descriptor refers to
diastereomers not predicted by this transition state
model.
1. (a) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997,
97, 2063; (b) Nishigaichi, Y.; Takuwa, A.; Naruta, Y.;
Maruyama, K. Tetrahedron 1993, 49, 7395; (c) Panek, J.
S.; Xu, F.; Rondon, A. C. J. Am. Chem. Soc. 1998, 120,
4113; (d) Zhu, B.; Panek, J. S. Eur. J. Org. Chem. 2001,
9, 1701; (e) Huang, H. B.; Spande, T. F.; Panek, J. S. J.
Am. Chem. Soc. 2003, 125, 626; (f) Keck, G. E.; Abbott,
D. E. Tetrahedron Lett. 1984, 25, 1883.
2. (a) Trost, B. M.; Urabe, H. J. Org. Chem. 1990, 55, 3982;
(b) Nishigaishi, Y.; Takuwa, A.; Jodai, A. Tetrahedron
Lett. 1991, 32, 2383; (c) Almendros, P.; Gruttadauria,
M.; Helliwell, M.; Thomas, E. J. J. Chem. Soc., Perkin
Trans. 1 1997, 2549; (d) Deka, D. C.; Helliwell, M.;
Thomas, E. J. Tetrahedron 2001, 57, 10017; (e) Martin,
N.; Thomas, E. J. Tetrahedron Lett. 2001, 42, 8373; (f)
Kumar, P.; Thomas, E. J.; Tray, D. R. J. Braz. Chem.
Soc. 2001, 12, 623.
3. (a) Dias, L. C.; Giacomini, R. J. Braz. Chem. Soc. 1998,
9, 357; (b) Evans, D. A.; Coleman, P. J.; Dias, L. C.
Angew Chem., Int. Ed. Engl. 1997, 36, 2738; (c) Evans, D.
A.; Trotter, B. W.; Cote, B.; Coleman, P. J.; Dias, L. C.;
Tyler, A. N. Angew Chem., Int. Ed. Engl. 1997, 36, 2744.
4. Dias, L. C.; Giacomini, R. Tetrahedron Lett. 1998, 39,
5343.
21. All new compounds were isolated as chromatographically
pure materials and exhibited acceptable 1H, 13C NMR,
IR, MS, and HRMS spectral data.
22. General procedure for allyltrichlorostannane coupling reac-
tions: To a solution of 2.5 mmol of allylsilane 6 in 7 mL
of dry CH2Cl2 at −78°C was added 2.5 mmol of SnCl4.
The resulting solution was stirred at −78°C for 30 min