Scheme 6 Synthesis of amythiamicin D 1. Reagents and conditions: (i) toluene, 120 °C, microwave (CEM Discover™ Focused Synthesizer), 150 W, 12 h,
33%; (ii) TFA, CHCl3, rt; (iii) Boc-Gly-OH 4 (1.5 eq), PyBOP (1.3 eq), iPr2NEt (4 eq), CH2Cl2, rt, 95% over 2 steps; (iv) H2 (1 atm), Pd black, MeOH, rt;
(v) 12, PyBOP (1.3 eq), iPr2NEt (10 eq), DMF, 60% over 2 steps; (vi) TFA, CHCl3, rt; (vii) DPPA (2 eq), iPr2NEt (10 eq), DMF (1 mM), 0 °C, 73% over
2 steps. PyBOP = benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate; DPPA = diphenylphosphoryl azide.
Bycroft–Gowland structure is correct, and the only remaining issue is
the stereochemistry at three centers: B. Fenet, F. Pierre, E. Cundliffe and
M. A. Ciufolini, Tetrahedron Lett., 2002, 43, 2367. In view of these
results, there must be some doubt about the earlier reported synthesis of
micrococcin P1 (refs. 11 and 12).
of the terminal N-Boc-group on the bis-thiazole moiety 5 was
followed by a PyBOP-mediated coupling to N-Boc-glycine 4 to
give the complete right-hand fragment of amythiamicin D 22
(Scheme 6). After much experimentation, it was found that the
benzyl ester in compound 22 could be removed by hydrogenolysis
over palladium black to give the corresponding carboxylic acid. A
second PyBOP-mediated reaction successfully coupled the left-
hand bis(thiazole) 12 to provide the cyclization precursor 23. The
terminal N-Boc and tert-butyl ester groups in 23 were simultane-
ously cleaved using TFA, and the resulting amino acid treated with
DPPA and Hünig’s base in DMF. This resulted in macrolactamiza-
tion in a yield of 73% (from 23) to give amythiamicin D 1.
Our synthetic material had properties consistent with those
reported for the natural product,5,† suggesting that our original
assumptions about the stereochemistry of the three chiral centers
was correct. Subsequent correspondence with the original authors
revealed that unpublished X-ray crystallographic data substantiate
the (10S,19S,29S)-stereochemistry thereby providing final con-
firmation that we had completed the first synthesis of the natural
product amythiamicin D, and paving the way for syntheses of other
thiopeptide natural products.
11 K. Okumura, A. Ito, D. Yoshioka and C.-G. Shin, Heterocycles, 1998,
48, 1319.
12 K. Okumura, T. Suzuki, Y. Nakamura and C.-G. Shin, Bull. Chem. Soc.
Jpn., 1999, 72, 2483.
13 M. C. Bagley, K. E. Bashford, C. L. Hesketh and C. J. Moody, J. Am.
Chem. Soc., 2000, 122, 3301.
14 T. R. Kelly and F. Lang, J. Org. Chem., 1996, 61, 4623.
15 M. C. Bagley, J. W. Dale, X. Xiong and J. Bower, Org. Lett., 2003, 5,
4421.
16 K. Umemura, H. Noda, J. Yoshimura, A. Konn, Y. Yonezawa and C. G.
Shin, Bull. Chem. Soc. Jpn, 1998, 71, 1391.
17 K. Umemura, S. Ikeda, J. Yoshimura, K. Okumura, H. Saito and C. G.
Shin, Chem. Lett., 1997, 1203.
18 K. Okumura, H. Saito, C. Shin, K. Umemura and J. Yoshimura, Bull.
Chem. Soc. Jpn, 1998, 71, 1863.
19 K. C. Nicolaou, B. S. Safina, C. Funke, M. Zak and F. J. Zecri, Angew.
Chem., Int. Ed., 2002, 41, 1937.
20 K. C. Nicolaou, M. Nevalainen, M. Zak, S. Bulat, M. Bella and B. S.
Safina, Angew. Chem., Int. Ed., 2003, 42, 3418.
21 Very recently, an alternative synthesis of the amythiamicin pyridine
core has been reported: M. C. Bagley, J. W. Dale, R. L. Jenkins and J.
Bower, Chem. Commun., 2004, 102.
22 P. Tavecchia, P. Gentili, M. Kurz, C. Sottani, R. Bonfichi, E. Selva, S.
Lociuro, E. Restelli and R. Ciabatti, Tetrahedron, 1995, 51, 4867.
23 B. W. Bycroft and M. S. Gowland, J. Chem. Soc., Chem. Commun.,
1978, 256.
24 U. Mocek, A. R. Knaggs, R. Tsuchiya, T. Nguyen, J. M. Beale and H.
G. Floss, J. Am. Chem. Soc., 1993, 115, 7557.
25 U. Mocek, Z. Zeng, D. O’Hagan, P. Zhou, L.-D. G. Fan, J. M. Beale and
H. G. Floss, J. Am. Chem. Soc., 1993, 115, 7992.
26 C. J. Moody, R. A. Hughes, S. P. Thompson and L. Alcaraz, Chem.
Commun., 2002, 1760.
We thank the EPSRC and AstraZeneca for financial support, Dr
I. Prokesˆ for NMR spectroscopy, the EPSRC Mass Spectrometry
Centre at Swansea for mass spectra, and Drs Yoshikazu Takahashi
and Yuzuru Akamatsu (Microbial Chemistry Research Foundation)
for helpful exchange of information.
Notes and references
1 D. E. Draper, in The Many Faces of RNA, ed. D. S. Eggleston, C. D.
Prescott and N. D. Pearson, Academic Press, San Diego, 1998, p.
113.
2 B. T. Porse, L. Leviev, A. S. Mankin and R. A. Garrett, J. Mol. Biol.,
1998, 276, 391.
3 S. E. Heffron and F. Jurnak, Biochemistry, 2000, 39, 37.
4 K. Shimanaka, N. Kinoshita, H. Iinuma, M. Hamada and T. Takeuchi,
J. Antibiot., 1994, 47, 668.
5 K. Shimanaka, Y. Takahashi, H. Iinuma, H. Naganawa and T. Takeuchi,
J. Antibiot., 1994, 47, 1145.
6 K. Shimanaka, Y. Takahashi, H. Iinuma, H. Naganawa and T. Takeuchi,
J. Antibiot., 1994, 47, 1153.
7 B. Clough, M. Strath, P. Preiser, P. Denny and R. J. M. Wilson, FEBS
Lett., 1997, 406, 123.
8 M. J. Rogers, E. Cundliffe and T. F. McCutchan, Antimicrob. Agents
Chemother., 1998, 42, 715.
9 B. Clough, K. Rangachari, M. Strath, P. R. Preiser and R. J. M. Wilson,
Protist, 1999, 150, 189.
10 The structure of micrococcin P1 is in doubt since the synthetic material
is different from the natural: (a) M. A. Ciufolini and Y.-C. Shen, Org.
Lett., 1999, 1, 1843; (b) recent studies have confirmed that the overall
27 Nicolaou has also reported a biomimetic Diels–Alder approach to the
tetrahydropyridine ring of thiostrepton: K. C. Nicolaou, M. Nevalainen,
B. S. Safina, M. Zak and S. Bulat, Angew. Chem., Int. Ed., 2002, 41,
1941.
28 C. J. Moody and M. C. Bagley, J. Chem. Soc., Perkin Trans. 1, 1998,
601.
29 T. D. Gordon, J. Singh, P. E. Hansen and B. A. Morgan, Tetrahedron
Lett., 1993, 34, 1901.
30 S. V. Downing, E. Aguilar and A. I. Meyers, J. Org. Chem., 1999, 64,
826.
31 P. Chevallet, P. Garrouste, B. Malawska and J. Martinez, Tetrahedron
Lett., 1993, 34, 7409.
32 F. S. Gibson, S. C. Bergmeier and H. Rapoport, J. Org. Chem., 1994, 59,
3216.
33 M. J. Burk, G. Casy and N. B. Johnson, J. Org. Chem., 1998, 63,
6084.
948
C h e m . C o m m u n . , 2 0 0 4 , 9 4 6 – 9 4 8