18 Shortly after our initial disclosure an alternative synthesis of this
Polymerisation procedures
potassium salt along with synthetic data on certain yttrium and
lutetium complexes was published: P. W. Roesky, Organometallics,
2002, 21, 4756.
1-Hexene. In a typical experiment 10 µmol precatalyst and
30–40 µmol 1-hexene were dissolved in d6-benzene and the H
NMR spectra taken periodically to ascertain the extent of the
reaction.
1
19 Z. W. Xie, Z. X. Liu, F. Xue, Z. Y. Zhang and T. C. W. Mak,
J. Organomet. Chem., 1997, 542, 285.
20 K. H. Denhaan, J. L. Deboer, J. H. Teuben, A. L. Spek,
B. Kojicprodic, G. R. Hays and R. Huis, Organometallics, 1986, 5,
1726.
21 G. Jeske, H. Lauke, H. Mauermann, P. N. Swepston, H. Schumann
and T. J. Marks, J. Am. Chem. Soc., 1985, 107, 8091.
22 All of the 89Y chemical shift values reported herein were measured
with respect to external YCl3 in D2O and were obtained via a
1H observation shift correlation technique. The chemical shift
values were confirmed in every case by selective decoupling of the
89Y nucleus at the reported frequency during acquision of a
1H NMR spectrum.
Ethene. In a typical NMR-scale experiment a d6-benzene
solution of 10 µmol precatalyst was repeatedly frozen, degassed
and thawed before being exposed to an atmosphere of ethene
1
(1.5 bar, 20 ЊC). H NMR spectra were taken periodically to
ascertain the extent of the reaction. In a typical preparative-
scale experiment a toluene solution (30 mL) of 25 µmol pre-
catalyst was repeatedly frozen, degassed and thawed before
being exposed to an atmosphere of ethene (1.5 bar, 20 ЊC) and
stirred at room temperature.
23 R. Duchateau, C. T. vanWee, A. Meetsma, P. T. van Duijnen and
J. H. Teuben, Organometallics, 1996, 15, 2279.
24 R. Duchateau, T. Tuinstra, E. A. C. Brussee, A. Meetsma,
P. T. van Duijnen and J. H. Teuben, Organometallics, 1997, 16, 3511.
25 A figure depicting this variable-temperature NMR study can be
found in the ESI†.
26 A. Mandel and J. Magull, Z. Anorg. Allg. Chem., 1997, 623, 1542.
27 A. Mandel and J. Magull, Z. Anorg. Allg. Chem., 1996, 622, 1913.
28 S. Bambirra, M. J. R. Brandsma, E. A. C. Brussee, A. Meetsma,
B. Hessen and J. H. Teuben, Organometallics, 2000, 19, 3197.
29 M. Booij, A. Meetsma and J. H. Teuben, Organometallics, 1991, 10,
3246.
30 M. F. Lappert, P. P. Power, A. R. Sanger and R. C. Srivastava, Metal
and Metalloid Amides, Ellis Horwood, Chichester, 1980.
31 M. Westerhausen, M. Hartmann, A. Pfitzner and W. Schwarz,
Z. Anorg. Allg. Chem., 1995, 621, 837.
32 Tables of selected bond lengths, angles and crystallographic data as
well as full details of all structure determinations and results of the
refinements for all of the molecular structures presented herein can
be found in the ESI†.
Acknowledgements
We would like to thank BP and EPSRC for financial support,
Dr Guy Clentsmith for support in the laboratory and Stefan
Arndt (RWTH, Aachen) for helpful discussions of the silane
chemistry.
Notes and References
1 (a) P. L. Watson, J. Am. Chem. Soc., 1982, 104, 337; (b) G. Jeske,
H. Lauke, H. Mauermann, P. N. Swepston, H. Schumann and
T. J. Marks, J. Am. Chem. Soc., 1985, 107, 8091; (c) G. Jeske, L. E.
Schock, P. N. Swepston, H. Schumann and T. J. Marks, J. Am.
Chem. Soc., 1985, 107, 8103; (d ) P. L. Watson and G. W. Parshall,
Acc. Chem. Res., 1985, 18, 51.
2 (a) W. J. Evans, Adv. Organomet. Chem., 1985, 24, 131; (b)
H. Schumann, J. A. Meesemarktscheffel and L. Esser, Chem. Rev.,
1995, 95, 865.
33 M. Westerhausen, M. Hartmann, A. Pfitzner and W. Schwarz,
Z. Anorg. Allg. Chem., 1995, 621, 837.
3 (a) F. T. Edelmann, Angew. Chem., Int. Ed. Engl., 1995, 34, 2466; (b)
G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int.
Ed. Engl., 1999, 38, 428; (c) W. E. Piers and D. J. H. Emslie, Coord.
Chem. Rev., 2002, 233, 131; (d ) F. T. Edelmann, D. M. M.
Freckmann and H. Schumann, Chem. Rev., 2002, 102, 1851; (e)
P. Mountford and B. D. Ward, Chem. Commun., 2003, 1797; ( f )
J. Okuda, Dalton Trans., 2003, 2367.
4 R. Kempe, Angew. Chem., Int. Ed. Engl., 2000, 39, 468.
5 F. G. N. Cloke, B. R. Elvidge, P. B. Hitchcock and V. M. E.
Lamarche, J. Chem. Soc., Dalton Trans., 2002, 2413.
6 (a) J. D. Scollard, D. H. McConville and J. J. Vittal, Organometallics,
1995, 14, 5478; (b) J. D. Scollard and D. H. McConville, J. Am.
Chem. Soc., 1996, 118, 10008; (c) J. D. Scollard, D. H. McConville,
N. C. Payne and J. J. Vittal, Macromolecules, 1996, 29, 5241; (d )
J. D. Scollard, D. H. McConville and J. J. Vittal, Organometallics,
1997, 16, 4415.
34 H. Schumann, E. C. E. Rosenthal, G. Kociok-köhn, G. A. Molander
and J. Winterfeld, J. Organomet. Chem., 1995, 496, 233.
35 A diagram representing the variable-temperature 1H NMR study of
8 is included in the ESI†.
36 The structure and refinement of [Y{ArN(CH2)3NAr}(OAr*)(THF)]
(OAr* = OC6H2-2,6-tBu2-4-Me) can be found in the ESI†.
37 W. J. Evans and B. L. Davis, Chem. Rev., 2002, 102, 2119.
38 The dihedral angle defined by N(1)–N(2)–N(3)–N(4), for example, is
78.2Њ.
39 K. C. Hultzsch, T. P. Spaniol and J. Okuda, Organometallics, 1997,
16, 4845.
40 H. Schumann, E. Palamidis and J. Loebel, J. Organomet. Chem.,
1990, 390, 45; J. Guan, Q. Shen, S. Jin and Y. Lin, Polyhedron, 1994,
13, 1695.
41 J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 1729.
42 G. K. B. Clentsmith, F. G. N. Cloke, J. C. Green, J. Hanks,
P. B. Hitchcock and J. F. Nixon, Angew. Chem., Int. Ed., 2003, 42,
1038.
7 D. D. Graf, W. M. Davis and R. R. Schrock, Organometallics, 1998,
17, 5820.
8 T. I. Gountchev and T. D. Tilley, Organometallics, 1999, 18, 2896.
9 (a) M. D. Fryzuk, J. B. Love and S. J. Rettig, Chem. Commun., 1996,
2783; (b) M. D. Fryzuk, J. B. Love and S. J. Rettig, J. Am. Chem.
Soc., 1997, 119, 9071.
10 M. D. Fryzuk, P. H. Yu and B. O. Patrick, Can. J. Chem., 2001, 79,
1194.
43 T. Grob, G. Seybert, W. Massa, K. Harms and K. Dehnicke,
Z. Anorg. Allg. Chem., 2000, 626, 1361.
44 W. J. Evans, J. H. Meadows, A. L. Wayda, W. E. Hunter and
J. L. Atwood, J. Am. Chem. Soc., 1982, 104, 2015.
45 W. J. Evans, J. H. Meadows and T. P. Hanusa, J. Am. Chem. Soc.,
1984, 106, 4454.
11 F. Estler, G. Eickerling, E. Herdtweck and R. Anwander,
Organometallics, 2003, 22, 1212.
12 M. E. G. Skinner and P. Mountford, J. Chem. Soc., Dalton Trans.,
2002, 1694.
13 (a) M. F. Lappert and R. Pearce, J. Chem. Soc., Chem. Commun.,
1973, 126; (b) K. C. Hultzsch, H. P. Spaniol and J. Okuda, Angew.
Chem., Int. Ed., 1999, 38, 227.
14 D. C. Bradley, J. S. Ghotra and F. A. Hart, J. Chem. Soc., Dalton
Trans., 1973, 1021.
46 W. J. Evans, D. K. Drummond, T. P. Hanusa and R. J. Doedens,
Organometallics, 1987, 6, 2279.
47 IR studies on 14 were complicated by ligand absorptions in the
1200–1400 cmϪ1 region, in which yttrium hydrides generally come
into resonance, and were thus inconclusive.
48 The value of x could have been found by depression of the freezing
point experiments in benzene, however it was not possible to
produce enough sample to carry out this experiment due to the low
yield of the reaction.
15 The lanthanide triiodides (except EuI3, SmI3 and YbI3) can
conveniently be prepared from the metal and mercury() iodide in a
sealed ampoule at high temperature. Full synthetic details can be
found in the ESI†.
16 F. T. Edelmann, in Synthetic Methods of Organometallic and
Inorganic Chemistry, ed. G. Brauer and W. A. Herrmann, Georg
Thieme Verlag, Stuttgart, 1997.
17 C. Callaghan, G. K. B. Clentsmith, F. G. N. Cloke, P. B. Hitchcock,
J. F. Nixon and D. M. Vickers, Organometallics, 1999, 18, 793; full
synthetic details for potassium menthoxide can be found in the ESI†.
49 P. B. Hitchcock, M. F. Lappert and R. G. Smith, Inorg. Chim. Acta,
1987, 139, 183.
50 W. T. Klooster, L. Brammer, C. J. Schaverien and P. H. M.
Budzelaar, J. Am. Chem. Soc., 1999, 121, 1381.
51 K. B. Aubrecht, K. Chang, M. A. Hillmyer and W. B. Tolman,
J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 284.
52 C. M. Forsyth, S. P. Nolan and T. J. Marks, Organometallics, 1991,
10, 2543.
53 P. F. Fu, L. Brard, Y. W. Li and T. J. Marks, J. Am. Chem. Soc., 1995,
117, 7157.
D a l t o n T r a n s . , 2 0 0 4 , 1 0 8 3 – 1 0 9 6
1095