2976 J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 12
Letters
P.; Ly, H. T.; Maidment, N. T. Intracerebroventricular orphanin
FQ/nociceptin suppresses dopamine release in the nucleus
accumbens of anaesthetized rats. Neuroscience 1996, 75, 1-4.
(c) Schlicker, E.; Morari, M. Nociceptin/orphanin FQ and neu-
rotransmitter release in the central nervous system. Peptides
2000, 21, 1023-1029.
(as in 1c, 1f, 1d , 1m , 1n ), the ligand is an NOP agonist,
whereas those ligands that are linked via a methylene
(1b, 1k , 1l, 1p ) are antagonists at the NOP receptor.
This effect of the change in the functional activity at
the receptor with a change in the N-1 piperidyl sub-
stituent is reminiscent of the effect of the nitrogen
substituent in morphine and oxymorphone-like µ ligands,
where the change in the N substituent from a methyl
(in morphine and oxymorphone) to an N-allyl or N-
cyclopropylmethyl converts the µ agonists to potent
antagonists nalorphine, naloxone, and naltrexone, re-
spectively. It is interesting to note that 1m , which can
be viewed as a conformationally restricted analogue of
the antagonist 1b and has the cyclohexyl ring of its
bicyclo structure still directly linked to the piperidyl
N-1, has the same binding affinity as the antagonist 1b
but is an NOP agonist. We are currently expanding our
SAR studies on the piperidyl N-1 substitution to estab-
lish the observation that the N-1 substituent plays a
role in determining the agonist/antagonist activity at
the NOP receptor in different structural classes of
piperidine-containing NOP ligands. These studies will
shed light on the pharmacophoric requirements for not
only selectivity but also efficacy at the NOP receptor
and will provide useful information for the rational
design of potent NOP agonists and antagonists. We will
report the results of our expanded SAR studies in the
near future.
(7) Murphy, N. P.; Lee, Y.; Maidment, N. T. Orphanin FQ/nociceptin
blocks acquisition of morphine place preference. Brain Res. 1999,
832, 168-170.
(8) (a) Manabe, T.; Noda, Y.; Mamiya, T.; Katagiri, H.; Houtani, T.;
Nishi, M.; Noda, T.; Takahashim, T.; Sugimoto, T.; Nabeshima,
T.; Takeshima, H. Facilitation of long-term potentiation and
memory in mice lacking nociceptin receptors. Nature 1998, 394,
577-581. (b) Mamiya, T.; Noda, Y.; Nishi, M.; Takeshima, H.;
Nabeshima, T. Enhancement of spatial attention in nociceptin/
orphanin FQ receptor knock-out mice. Brain Res. 1998, 783,
236-240. (c) Mamiya, T.; Noda, Y.; Ren, X.; Nagai, T.; Takeshi-
ma, H.; Ukai, M.; Nabeshima, T. Morphine tolerance and
dependence in the nociceptin receptor knockout mice. J . Neural
Transm. 2001, 108, 1349-1361.
(9) (a) Zaratin, P. F.; Petrone, G.; Sbacchi, M.; Garnier, M.; Fossati,
C.; Petrillo, P.; Ronzoni, S.; Giardina, G. A. M.; Scheideler, M.
A. Modification of nociceptin and morphine tolerance by the
selective ORL-1 antagonist SB-612111. J . Pharmacol. Exp. Ther.
2004, 308, 454-461. (b) Ueda, H.; Inoue, M.; Takeshima, H.;
Iwasawa, Y. Enhanced spinal nociceptin receptor expression
develops morphine tolerance and dependence. J . Neurosci. 2000,
20, 7640-7647.
(10) Zaveri, N. Peptide and nonpeptide ligands for the nociceptin/
orphanin FQ receptor ORL1: Research tools and potential
therapeutic agents. Life Sci. 2003, 73, 663-678.
(11) (a) Rover, S.; Adam, G.; Cesura, A. M.; Galley, G.; J enck, F.;
Monsma, F. J .; Wichmann, J .; Dautzenberg, F. M. High affinity,
non-peptide agonists for the ORL1 (orphanin FQ/nociceptin)
receptor. J . Med. Chem. 2000, 43, 1329-1338. (b) Kolczweski,
S.; Adam, G.; Cesura, A. M.; J enck, F.; Hennig, M.; Oberhauser,
T.; Poli, S. M.; Rossler, F.; Rover, S.; Wichmann, J .; Dautzenberg,
F. M. Novel hexahydrospiro[piperidine-4,1′[3,4-c]pyrroles]: Highly
selective small-molecule nociceptin/orphanin FQ receptor ago-
nists. J . Med. Chem. 2003, 46, 255-264.
(12) Kawamoto, H.; Ozaki, S.; Itoh, Y.; Miyaji, M.; Arai, S.; Na-
kashima, H.; Kato, T.; Ohta, H.; Iwasawa, Y. Discovery of the
first potent and selective small molecule opioid receptor-like
(ORL1) antagonist: 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxy-
methyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one
(J -113397). J . Med. Chem. 1999, 42, 5061-5063.
(13) Shinkai, H.; Ito, T.; Iida, T.; Kitao, Y.; Yamada, H.; Uchida, I.
4-Aminoquinolines: novel nociceptin antagonists with analgesic
activity. J . Med. Chem. 2000, 43, 4667-4677.
(14) Poos, G. I.; Ambler, P. 1-(1-Hydrocarbyl-4-piperidyl)-2-indoli-
none. U.S. Patent 3,325,499, 1967.
(15) Forbes, I. T. A short and efficient synthesis of N-substituted
indol-2-ones (oxindoles). Tetrahedron Lett. 2001, 2, 6943-6945.
(16) Borch, R. F.; Bernstein, M. D.; Durst, H. D. The cyanohydri-
doborate anion as a selective reducing agent. J . Am. Chem. Soc.
1971, 93, 2897-2904.
(17) Tschaen, D. M.; Abramson, L.; Cai, D.; Desmond, R.; Dolling,
U.-H.; Frey, L.; Karady, S.; Shi, Y.-J .; Verhoeven, T. R. Asym-
metric synthesis of MK-0499. J . Org. Chem. 1995, 60, 4324-
4330.
Ack n ow led gm en t. This work was supported by a
grant from the National Institutes on Drug Abuse
(Grant DA14026 to N.T.Z.).
Su p p or tin g In for m a tion Ava ila ble: Experimental de-
tails, analytical and spectral data, and X-ray crystal structure
data for final compounds. This material is available free of
Refer en ces
(1) Mollereau, C.; Parmentier, M.; Mailleux, P.; Butour, J . L.;
Moisand, C.; Chalon, P.; Caput, D.; Vassart, G.; Meunier, J . C.
ORL1, a novel member of the opioid receptor family. Cloning,
functional expression and localization. FEBS Lett. 1994, 341,
33-38.
(2) Meunier, J . C.; Mollereau, C.; Toll, L.; Suaudeau, C.; Moisand,
C.; Alvinerie, P.; Butour, J . L.; Guillemot, J . C.; Ferrara, P.;
Monsarrat, B.; Mazarguil, H.; Vassart, G.; Parmentier, M.;
Constentin, J . Isolation and structure of the endogenous agonist
of opioid receptor-like ORL1 receptor. Nature 1995, 377, 532-
535.
(3) Reinscheid, R. K.; Nothacker, H. P.; Bourson, A.; Ardati, A.;
Henningsen, R. A.; Bunzow, J . R.; Grandy, D. K.; Langen, H.;
Monsma, F. J ., J r.; Civelli, O. Orphanin FQ: a neuropeptide that
activates an opioid-like G protein-coupled receptor. Science 1995,
270, 792-794.
(4) Calo, G.; Guerrini, R.; Rizzi, A.; Salvadori, S.; Regoli, D.
Pharmacology of nociceptin and its receptor: A novel therapeutic
target. Br. J . Pharmacol. 2000, 129, 1261-1283.
(5) (a) J enck, F.; Moreau, J . L.; Martin, J . R.; Kilpatrick, G. J .;
Reinscheid, R. K.; Monsma, F. J ., J r.; Nothacker, H. P.; Civelli,
O. Orphanin FQ acts as an anxiolytic to attenuate behavioral
responses to stress. Proc. Nat. Acad. Sci. U.S.A. 1997, 94,
14854-14858. (b) Griebel, G.; Perrault, G.; Sanger, D. J .
Orphanin FQ, a novel neuropeptide with anti-stress-like activity.
Brain Res. 1999, 836, 221-224.
(6) (a) Siniscalchi, A.; Rodi, D.; Beani, L.; Bianchi, C. Inhibitory
effect of nociceptin on [3H]-5-HT release from rat cerebral cortex
slices. Br. J . Pharmacol. 1999, 128, 119-123. (b) Murphy, N.
(18) Adapa, D. I.; Toll, L. Relationship between binding affinity and
functional activity of nociceptin/orphanin FQ. Neuropeptides
1997, 31, 403-408.
(19) Toll, L.; Berzetei-Gurske, I. P.; Polgar, W. E.; Brandt, S. R.;
Adapa, I. D.; Rodriguez, L.; Schwartz, R. W.; Haggart, D.;
O’Brien, A.; White, A.; Kennedy, J . M.; Craymer, K.; Farrington,
L.; Auh, J . S. Standard binding and functional assays related
to medications development division testing for potential cocaine
and opiate narcotic treatment medications. NIDA Res. Monogr.
1998, 178, 440-466.
(20) Dooley, C. T.; Spaeth, C. G.; Berzetei-Gurske, I. P.; Craymer,
K.; Adapa, I. D.; Brandt, S. R.; Houghten, R. A.; Toll, L. Binding
and in vitro activities of peptides with high affinity for the
nociceptin/orphanin FQ receptor, ORL1. J . Pharmacol. Exp.
Ther. 1997, 283, 735-741.
(21) See Supporting Information.
J M034249D