C O M M U N I C A T I O N S
In summary, the results described here demonstrate that the
molecular dumbbell based on an oligo-p-phenylene self-assembles
into well-defined left-handed helical cylinders with a diameter of
a molecular length scale and a pitch length of 5.6 nm. These
elementary fibrils are further assembled to superhelical fibers with
lengths up to several micrometers. The primary driving force
responsible for the helical arrangement of the conjugated rods is
believed to be the energy balance between repulsive interactions
among the adjacent bulky dendritic segments and π-π stacking
interactions. Such a well-defined helical arrangement of conjugated
rod building blocks may provide a new strategy for the design of
one-dimensional nanostructured materials with biomimetic, elec-
tronic, and photonic functions.
Acknowledgment. We gratefully acknowledge the National
Creative Research Initiative Program of the Korean Ministry of
Science and Technology for financial support of this work.
Supporting Information Available: Synthetic procedures, char-
acterization, and DLS data. This material is available free of charge
Figure 3. TEM images of 1 (a) without staining, (b) and (c) with negative
staining, with density profile inset.
molecular length (8.3 nm by CPK), the image indicates that the
diameter of the elementary cylindrical objects corresponds to one
molecular length. The density profiles taken parallel to the long
axis of a helical fiber confirmed a regular pitch to be 5.6 nm (Figure
3c).
On the basis of the results described thus far, it can be concluded
that molecular dumbbell 1 self-assembles into cylindrical micelles
in which the molecules are aligned perpendicularly to the cylinder
axis. However, the rod segments stack on top of each other with
mutual rotation in the same direction to avoid steric hindrance
between the bulky dendritic wedges. Consequently, this stacking
of the aromatic rod segments would lead to helical objects,
consisting of hydrophobic aromatic cores surrounded by hydrophilic
dendritic segments that are exposed to the aqueous environment.
The observed supramolecular handedness is believed to arise from
steric constraints imposed by the chiral centers in the dendritic
wedges.
The formation of a helical structure is also illustrated by a
computer model in which the COMPASS empirical force-field
calculation is used on a small cluster of 12 molecules stacked on
top of each other. Energy minimization of the cluster suggests that
a helical arrangement of the rod segments is energetically favorable.
The calculation revealed that the distance between two adjacent
rods is 0.46 nm and the angle of rotation is close to 15 degrees,
resulting in a pitch length of 5.4 nm. These single elementary fibrils
are further assembled via amphiphilic interactions to give left-
handed superhelical fibers. Although the origin of superhelicity is
not clear at present, winding of the individual helical strands around
each other seems to be responsible for the formation of a
superhelical structure.
References
(1) (a) Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. J. Mater. Chem.
2003, 13, 2661-2670. (b) Wong, G. C. L.; Tang, J. S.; Lin, A.; Li, Y.;
Janmey, P. A.; Safinya, C. R. Science 2000, 288, 2035-2039.
(2) (a) Moreau, L.; Barthelemy, P.; El Maataoui, M.; Grinstaff, M. W. J.
Am. Chem. Soc. 2004, 126, 7533-7539. (b) Lashuel, H. A.; LaBrenz, S.
R.; Woo, L.; Serpell, L. C.; Kelly, J. W. J. Am. Chem. Soc. 2000, 122,
5262-5277. (c) Ky Hirschberg, J. H. K.; Brunsveld, L.; Ramzi, A.;
Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Nature 2000, 407,
167-170. (d) Aggeli, A.; Bell, M.; Carrick, L. M.; Fishwick, C. W. G.;
Harding, R.; Mawer, P. J.; Radford, S. E.; Strong, A. E.; Boden, N. J.
Am. Chem. Soc. 2003, 125, 9619-9628. (e) Cuccia, L. A.; Ruiz, E.; Lehn,
J.-M.; Homo, J.-C.; Schmutz, M. Chem.-Eur. J. 2002, 8, 3448-3457.
(f) Enomoto, M.; Kishimura, A.; Aida, T. J. Am. Chem. Soc. 2001, 123,
5608-5609.
(3) (a) Leclere, P.; Calderone, A.; Marsitzky, D.; Francke, V.; Geertz, Y.;
Mu¨llen, K.; Bredas, J. L.; Lazzaroni, R. AdV. Mater. 2000, 12, 1042-
1046. (b) Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H. Chem.-
Eur. J. 2004, 10, 986-993. (c) Kilbinger, A. F. M.; Schenning, A. P. H.
J.; Goldoni, F.; Feast, W. J.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122,
1820-1821. (d) Zahn, S.; Swager, T. M. Angew. Chem., Int. Ed. 2002,
41, 4225-4230. (e) Lee, M.; Kim, J.-W.; Hwang, I.-W.; Kim, Y.-R.; Oh,
N.-K.; Zin, W.-C. AdV. Mater. 2001, 13, 1363-1368. (f) Lee, M.; Jeong,
Y.-S.; Cho, B.-K.; Oh, N.-K.; Zin, W.-C. Chem.-Eur. J. 2002, 8, 876-
883.
(4) Lee, M.; Cho, B.-K.; Zin, W.-C. Chem. ReV. 2001, 101, 3869-3892.
(5) Yoo, Y.-S.; Choi, J.-H.; Song, J.-H.; Oh, N.-K.; Zin, W.-C.; Park, S.;
Chang, T.; Lee, M. J. Am. Chem. Soc. 2004, 126, 6294-6300.
(6) Fo¨rster, S.; Plantenberg, T. Angew. Chem., Int. Ed. 2002, 41, 688-714.
(7) (a) Messmore, B. W.; Hulvat, J. F.; Sone, E. D.; Stupp, S. I. J. Am. Chem.
Soc. 2004, 126, 14452-14458. (b) Varghese, R.; George, S. J.; Ajayag-
hosh, A. Chem. Commun. 2005, 593-595.
(8) Jonkheijm, P.; Hoeben, F. J. M.; Kleppinger, R.; van Herrikhuyzen, J.;
Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125,
15941-15949.
(9) See Supporting Information.
(10) Gohy, J.-F.; Lohmeijer, B. G. G.; Alexeev, A.; Wang, X.-S.; Manners, I.;
Winnik, M. A.; Schubert, U. S. Chem.-Eur. J. 2004, 10, 4315-4323.
(11) Bockstaller, M.; Ko¨hler, W.; Wegner, G.; Vlassopoulos, D.; Fytas, G.
Macromolecules 2000, 33, 3951-3953.
JA051961M
9
J. AM. CHEM. SOC. VOL. 127, NO. 27, 2005 9669