Journal of the American Chemical Society
Page 10 of 11
Pinacol Coupling of Aldehydes. J. Org. Chem. 1999, 64, 3230–3236.
(36) (a) Tarantino, K. T.; Liu, P.; Knowles, R. R. Catalytic Ketyl-
(c) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. O–H hydrogen
bonding promotes H-atom transfer from α C–H bonds for C-alkylation
of alcohols. Science, 2015, 349, 1532–1536. For examples of the
reactivity of α-amino radicals see: (d) Shaw, M. H.; Shurtleff, V. W.;
Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Native
functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent
nucleophiles. Science, 2016, 352, 1304–1308. (e) Espelt, L. R.;
McPherson, I. S.; Wiensch, E. M.; Yoon T. P. Enantioselective
Conjugate Additions of α-Amino Radicals via Cooperative Photoredox
and Lewis Acid Catalysis. J. Am. Chem. Soc. 2015, 137, 2452–2455.
For a recent example of degradation of α-halo radicals to aldehydes
see: (f) Ma, X.; Herzon, S. B. Synthesis of Ketones and Esters from
Heteroatom-Functionalized Alkenes by Cobalt-Mediated Hydrogen
Atom Transfer. J. Org. Chem. 2016, 81, 8673−8695.
Olefin Cyclizations Enabled by Proton-Coupled Electron Transfer. J.
Am. Chem. Soc. 2013, 135, 10022–10025. (b) Weinberg, D. R.;
Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B.
C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Proton-
Coupled Electron Transfer. Chem. Rev. 2012, 112, 4016–4093.
(37) (a) Yan, Y.; Zeitler, E. L.; Gu, J.; Hu, Y.; Bocarsly, A. B.
Electrochemistry of Aqueous Pyridinium: Exploration of a Key Aspect
of Electrocatalytic Reduction of CO2 to Methanol. J. Am. Chem. Soc.
2013, 135, 14020–14023. (b) Keith, J. A.; Carter, E. A. Theoretical
Insights into Pyridinium-Based Photoelectrocatalytic Reduction of
CO2. J. Am. Chem. Soc. 2012, 134, 7580–7583.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(38) DFT calculations were also performed using different levels of
theory with different solvation parameter, giving a range of values for
pyridine reduction potentials, see SI for full details.
(25) Carrolla, M. P.; Guiry, P. J. P,N ligands in asymmetric
catalysis. Chem. Soc. Rev. 2014, 43, 819–833.
(26) Primary alcohols can be oxidized under Heck conditions. For
an example see: HyunKim, B.; Lee, J. G.; Yim, T.; Kim, H.-J.; Lee, H.
Y.; Kim Y. G. Highly efficient two-step selective synthesis of 2,6-
dimethylnaphthalene. Tetrahedron Lett. 2006, 47, 7727–7730.
(27) Sohda, T.; Ikeda, H.; Megura, K. Studies on Antidiabetic
Agents. XII. Synthesis and Activity of the Metabolites of (±)-5-[p-[2-
(39) Joerg, S.; Drago, R. S.; Adams, J. Donor–acceptor and polarity
parameters for hydrogen bonding solvents. J. Chem. Soc., Perkin
Trans. 2, 1997, 2431–2438.
(40) Krishnan, R.; Fillingim, T. G.; Lee, J.; Robinson, G. W. Solvent
structural effects on proton dissociation. J. Am. Chem. Soc. 1990, 112,
1353–1357.
(5-Ethyl-2-pyridyl)ethoxy]benzyl]-2,
4-thiazolidinedione
(41) (a) Arora, A.; Teegardin, K.; Weaver, J. D. Reductive
Alkylation of 2-Bromoazoles via Photoinduced Electron Transfer: A
Versatile Strategy to Csp2–Csp3 Coupled Products. Org. Lett. 2015,
17, 3722–3725. (b) Singh, A.; Arora, A.; Weaver, J. D. Photoredox-
Mediated C–H Functionalization and Coupling of Tertiary Aliphatic
Amines with 2-Chloroazoles. Org. Lett. 2013, 15, 5390–5393. (c)
Arora, A.; Weaver, J. D. Photocatalytic Generation of 2-Azolyl
Radicals: Intermediates for the Azolylation of Arenes and Heteroarenes
via C–H Functionalization. Org. Lett. 2016, 18, 3996–3999.
(42) Andrieux, C. P.; Robert, M.; Saveant, J.-M. Role of
Environmental Factors in the Dynamics of Intramolecular Dissociative
Electron Transfer. Effect of Solvation and Ion-Pairing on Cleavage
Rates of Anion Radicals. J. Am. Chem. Soc. 1995, 117, 9340–9346.
(43) Geise, B. Formation of CC Bonds by Addition of Free Radicals
to Alkenes. Angew. Chem. Int. Ed. 1983, 22, 753–764.
(44) Giese, B.; González-Gómez, J. A.; Witzel, T. The Scope of
Radical CC‐Coupling by the “Tin Method”. Angew. Chem. Int. Ed.
1984, 23, 69–70.
(45) Yin, Y.; Dai, Y.; Jia, H.; Li, J.; Bu. L.; Qiao, B.; Zhao, X.; Jiang,
Z. Conjugate Addition–Enantioselective Protonation of N-Aryl
Glycines to α-Branched 2-Vinylazaarenes via Cooperative Photoredox
and Asymmetric Catalysis. J. Am. Chem. Soc. 2018, 140, 6083–6087.
(46) Chernyak, N; Buchwald, S. L. Continuous-Flow Synthesis of
Monoarylated Acetaldehydes Using Aryldiazonium Salts. J. Am.
Chem. Soc. 2012, 134, 12466–12469.
(47) Campbell, J. M.; Xu, H.-C.; Moeller, K. D. Investigating the
Reactivity of Radical Cations: Experimental and Computational
Insights into the Reactions of Radical Cations with Alcohol and p-
Toluene Sulfonamide Nucleophiles. J. Am. Chem. Soc. 2012, 134,
18338–18344.
(48) Horner, J. H.; Taxil, E.; Newcomb, M. Laser Flash Photolysis
Kinetic Studies of Enol Ether Radical Cations. Rate Constants for
Heterolysis of α -Methoxy- β -phosphatoxyalkyl Radicals and for
Cyclizations of Enol Ether Radical Cations. J. Am. Chem. Soc. 2002,
124, 5402–5410.
(49) Le, C.; Wismer, M. K.; Shi, Z.-C.; Zhang, R.; Conway, D. V.;
Li, G.; Vachal, P; Davies, I. W.; MacMillan, D. W. C. A General
Small-Scale Reactor To Enable Standardization and Acceleration of
Photocatalytic Reactions. ACS Cent. Sci. 2017, 3, 647–653.
(50) Cismesia, M. A.; Yoon, T. P. Characterizing chain processes in
visible light photoredox catalysis. Chem. Sci. 2015, 6, 5426–5434.
(51) Huang, W.; Cheng, X. Hantzsch Esters as Multifunctional
Reagents in Visible-Light Photoredox Catalysis. Synlett, 2017, 28,
148–158.
(Pioglitazone). Chem. Pharm. Bull. 1995, 43, 2168–2172.
(28) Beeler, A. B.; Schaus, S. E.; Porco Jr, J. A. Chemical library
synthesis using convergent approaches. Curr. Opin. Chem. Biol. 2005,
9, 277–284.
(29) Tucker, J. W.; Zhang, Y.; Jamison, T. F.; Stephenson, C. R. J.
Visible‐Light Photoredox Catalysis in Flow. Angew. Chem. Int. Ed.
2012, 51, 4144–4147.
(30) (a) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H.
The Hitchhiker’s Guide to Flow Chemistry. Chem. Rev. 2017, 117,
11796–11893. (b) Lima, F.; Kabeshov, M. A.; Tran, D. N.;
Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S.
V. Visible Light Activation of Boronic Esters Enables Efficient
Photoredox C(sp2)–C(sp3) Cross-Couplings in Flow. Angew. Chem.
Int. Ed. 2016, 55, 14085–14089.
(31) (a) Beatty, J. W.; Douglas J. J.; Miller R.; McAtee, R. C.; Cole,
K. P.; Stephenson, C. R. J. Photochemical Perfluoroalkylation with
Pyridine N-Oxides: Mechanistic Insights and Performance on a
Kilogram Scale. Chem 2016, 1, 456–472. (b) Caron, A.; Hernandez-
Perez, A. C.; Collins, S. K. Synthesis of a Carprofen Analogue Using a
Continuous Flow UV-Reactor. Org. Process Res. Dev. 2014, 18, 1571–
1574. (c) Šterk, D.; Juki č , M.; Č asar, Z. Application of Flow
Photochemical Bromination in the Synthesis of
a
5-
Bromomethylpyrimidine Precursor of Rosuvastatin: Improvement of
Productivity and Product Purity. Org. Process Res. Dev. 2013, 17, 145–
151. (d) Lévesque, F.; Seeberger P. H. Continuous-flow synthesis of
the anti-malaria drug artemisinin. Angew. Chem. Int. Ed. 2012, 51,
1706–1709.
(32) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.;
Knowles, R. R. Enantioselective Photoredox Catalysis Enabled by
Proton-Coupled Electron Transfer: Development of an Asymmetric
Aza-Pinacol Cyclization. J. Am. Chem. Soc. 2013, 135, 17735–17738.
(33) Bégué, J.-P.; Bonnet-Delpon, D.; Crousse, B. Fluorinated
Alcohols: A New Medium for Selective and Clean Reaction. Synlett,
2004, 1, 18–29.
(34) Holubek, J.; Volke, J. Polarography of heterocyclic aromatic
compounds. XIII. Polarographic fission of carbon-halogen bonds in
monohalogenopyridines. Collect. Czech. Chem. Commun. 1962, 27,
680–692.
(35) (a) Enemærke, R. J.; Christensen, T. B.; Jensen, H.; Daasbjerg,
K. Application of a new kinetic method in the investigation of cleavage
reactions of haloaromatic radical anions. J. Chem. Soc., Perkin Trans.
2 2001, 1620–1630. (b) Andrieux, C. P.; Blocman, C.; Dumas-
Bouchiat, J.-M.; Saveant, J.-M. Heterogeneous and homogeneous
electron transfers to aromatic halides. An electrochemical redox
catalysis study in the halobenzene and halopyridine series. J. Am.
Chem. Soc. 1979, 101, 3431–3441.
ACS Paragon Plus Environment