2962
I. Suzuki et al. / Bioorg. Med. Chem. Lett. 14 (2004) 2959–2962
Table 2. DNA cleaving abilities of synthetic enediynes 1–3 and the reference 4
Entry
Enediyne
Time (min)
Temperature (°C)
% Cleavageb;c
1
2
3
4
5
6
7
8
2aa
2aa
2aa
2b
2b
2b
3
3
0
25 ꢁ 3
11
27
60
3
25
12 ꢁ 4
ꢁ 4
0
0
3
7
7
3
25 ꢁ 4
40 ꢁ 3
60
3
25
0
0
0
3
25
ꢁ 7
3
<5
11
4
3
25 ꢁ 2
UX174R-1 DNA (0.46 lg, WAKO Pure Chemical Industries, Ltd) in 20 lL phosphate buffer solution (pH 8.0, containing 20% acetonitrile) with
drugs (500 lM) was incubated and photo-irradiated using a VL-30L (VILBER LOURMAT, 1820 lW cmꢀ2, k > 365 nm) for indicated times at 25 or
37 °C. Immediately, 15 lL samples were loaded into 1% agarose gel. The running buffer was 20 mM TAE (pH 7.8). Electrophoresis was at 50 V for
8 h. After electrophoresis, gel was stained for 1 h in ethidium bromide (1 lg/mL) and de-stained for 5 min in water. Relative amounts of DNA in
Form I, Form II, and Form III were determined by densitometry.
a Enediyne 2a was suspended in phosphate buffer solution.
b Values presented are mean value ꢁ SD of three runs. A control reaction mixture without the addition of any drug was incubated and photo-
irradiated. The mean value of three runs was used as the background to be subtracted from the obtained values.
c No isolable product could be detected on TLC from the reaction mixtures.
740; (g) Evenzahav, A.; Turro, N. J. J. Am. Chem. Soc.
into a buffer solution up to a concentration of 500 lM,
1998, 120, 1835–1841.
while 2a did not dissolve completely even below 100 lM,
4. (a) Suzuki, I.; Wakayama, M.; Shigenaga, A.; Nemoto,
becoming a suspension. The observed DNA cleavage
H.; Shibuya, M. Tetrahedron Lett. 2000, 41, 10019–10023;
(b) Suzuki, I.; Shigenaga, A.; Nemoto, H.; Shibuya, M.
could be caused by the biradical through the photo-
triggered cycloaromatization reaction, however, the
possibility of cleavage being due to the singlet oxygen
that was yielded by the photosensitization of a nitro-
Heterocycles 2001, 54, 571–576; (c) Suzuki, I.; Tsuchiya,
Y.; Shigenaga, A.; Nemoto, H.; Shibuya, M. Tetrahedron
Lett. 2002, 43, 6779–6781.
phenyl moiety could not be excluded. To clarify this
point, we performed a DNA cleaving assay of the ref-
erence compounds 4 under the same conditions.
Although the reference carbonate 4 damaged DNA to
some extent, the degree of cleavage was around 10%
(entry 8) and therefore the potent DNA cleavage
exhibited by enediyne 2b should be mainly attributed to
the oxidative damage caused by the photoreleased
biradicals.11
5. (a) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I.
Tetrahedron Lett. 1989, 30, 4995–4998; (b) Myers, A. G.;
Kuo, E. Y.; Finney, N. S. J. Am. Chem. Soc. 1989, 111,
8057–8059; (c) Saito, I.; Nagata, R.; Yamanaka, H.;
Murahashi, E. Tetrahedron Lett. 1990, 31, 2907–2910; (d)
Hirama, M.; Gomibuchi, T.; Fujiwara, K. J. Am. Chem.
Soc. 1991, 113, 9851–9853; (e) Nicolaou, K. C.; Wende-
born, S.; Maligres, P.; Isshiki, K.; Zein, N.; Ellestad, G.
Angew. Chem., Int. Ed. Engl. 1991, 30, 418–420; (f) Myers,
A. G.; Dragovich, P. S.; Kuo, E. Y. J. Am. Chem. Soc.
1992, 114, 9369–9386; (g) Wenthold, P. G.; Wierschke, S.
G.; Nash, J. J.; Squires, R. R. J. Am. Chem. Soc. 1993,
115, 12611–12612; (h) Wenthold, P. G.; Wierschke, S. G.;
Nash, J. J.; Squires, R. R. J. Am. Chem. Soc. 1994, 116,
7378–7392; (i) Sugiyama, H.; Yamashita, K.; Fujiwara, T.;
Saito, I. Tetrahedron 1994, 50, 1311–1325.
In conclusion, we developed enediyne model compounds
bearing photo-triggering devices and showed that these
synthetic enediynes exhibited potent DNA damaging
activity under UV irradiation conditions. We also clar-
ified that the biradical formation played the important
role in the cleavage of DNA in our systems.12 Further
improvement of the model compounds is now under-
way.
6. Brudermueller, M.; Musso, H. Angew. Chem. 1988, 100,
267–268.
7. Schwartz, M. E.; Breaker, R. R.; Asteriadis, G. T.; deBear,
J. S.; Gough, G. R. Bioorg. Med. Chem. Lett. 1992, 2,
1019–1024.
8. Claremon, D. A.; Phillips, B. T. Tetrahedron Lett. 1988,
29, 2155–2158.
References and notes
9. (a) Hasan, A.; Stengele, K.-P.; Giegrich, H.; Cornwell, P.;
Isham, K. R.; Sachleben, R. A.; Pfleiderer, W.; Foote, R.
Tetrahedron 1997, 53, 4247–4264; (b) Giegrich, H.; Eisele-
1. (a) Armitage, B. Chem. Rev. 1998, 98, 1171–1200; (b) Ros,
T. D.; Spalluto, G.; Boutorine, A. S.; Bensasson, R. V.;
Prato, M. Curr. Pharm. Des. 2001, 7, 1781–1821.
€
Buhler, S.; Hermann, C.; Kvasyuk, E.; Charubala, R.;
2. Bonnett, R. Chemical Aspects of Photodynamic Therapy;
Gordon and Breach Science: London, UK, 2000.
Pfleiderer, W. Nucleos. Nucleot. 1998, 17, 1987–1996.
10. (a) Bordwell, F. G.; Knipe, A. C. J. Am. Chem. Soc. 1971,
93, 3416–3419; (b) Jin, S.-J.; Arora, P. K.; Sayre, L. M.
J. Org. Chem. 1990, 55, 3011–3018.
11. Mechanistically, the r-radical part of the biradical instead
of the resonance-stabilized p-radical part would be
responsible for this DNA scission, although the alkylation
pathway cannot be ruled out.
3. (a) Shiraki, T.; Sugiura, Y. Biochemistry 1990, 29, 9795–
9798; (b) Wender, P. A.; Zercher, C. K.; Beckham, S.;
Haubold, E. M. J. Org. Chem. 1993, 58, 5867–5869; (c)
Gomibuchi, T.; Fujiwara, K.; Nehira, T.; Hirama, M.
Tetrahedron Lett. 1993, 34, 5753–5756; (d) Turro, N. J.;
Evenzahav, A.; Nicolaou, K. C. Tetrahedron Lett. 1994,
35, 8089–8092; (e) Wender, P. A.; Beckham, S.; O’Leary,
J. G. Synthesis 1994, 1278–1282 (special issue); (f)
Gomibuchi, T.; Hirama, M. J. Antibiot. 1995, 48, 738–
12. Since the DNA damage caused by 2a was of the similar
degree to the case of 4, we cannot attribute the DNA
damage to only the biradical.