C O M M U N I C A T I O N S
Metal Phosphine Complexes; Plenum: New York, 1983. (c) Collman, J.
P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications
of Organotransition Metal Chemistry; University Science: Mill Valley,
CA, 1987.
(2) (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290-1309. (b)
Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. ReV. 2000,
100, 39-91. (c) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am.
Chem. Soc. 1991, 113, 361-363.
(3) (a) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem.
Soc. 1999, 121, 2674-2678. (b) Jafarpour, L.; Nolan, S. P. AdV.
Organomet. Chem. 2001, 46, 181-222. (c) Jafarpour, L.; Nolan, S. P. J.
Organomet. Chem. 2001, 617, 17-27. (d) Trnka, T. M.; Grubbs, R. H.
Acc. Chem. Res. 2001, 34, 18-29.
(4) (a) Lee, H. M.; Jiang, T.; Stevens, E. D.; Nolan, S. P. Organometallics
2001, 20, 1255-1258 (b) Hillier, A. C.; Lee, H. M.; Stevens, E. D.; Nolan,
S. P. Organometallics 2001, 20, 4246-4252. (c) Vasquez-Serrano, L. D.;
Owens, B. T.; Buriak, J. M. Chem. Commun. 2002, 2518-2519.
(5) (a) Grasa, G. A.; Viciu, M. S.; Huang, J.; Nolan, S. P. J. Org. Chem.
2001, 66, 7729-7737. (b) Grasa, G. A.; Viciu, M. S.; Huang, J.; Zhang,
C.; Trudell, M. L.; Nolan, S. P. Organometallics 2002, 21, 2866-2873.
(6) Tolman, C. A. Chem. ReV. 1977, 77, 313-324.
Figure 3. Temperature variation of Keq monitored by FTIR.
(7) CAUTION should be used while manipulating Ni(CO)4 as it is
EXTREMELY toxic.
(8) For two examples of related Ni(CO)3(NHC) complexes, see: (a) Herrmann,
W. A.; Goossen, L. J.; Artus, G. R. J.; Ko¨cher, C. Organometallics 1997,
16, 2472-2477. (b) O¨ fele, K.; Herrmann, W. A.; Mihalios, D.; Elison,
M.; Herdtweck, E.; Scherer, W.; Mink, J. J. Organomet. Chem. 1993,
459, 177-184.
(9) Ligands 3-5 react in a similar manner. Complete characterization,
including X-ray diffraction studies of all of these saturated Ni(CO)3(NHC)
complexes, have been carried out and will be published elsewhere.
(10) For 8; νCO (A1, CH2Cl2) ) 2050.7 cm-1. For 9; νCO (A1, CH2Cl2) ) 2051.5
cm-1. For Ni(CO)3(PtBu3); νCO (A1, CH2Cl2) ) 2056.1 cm-1. For less
basic phosphines, see ref 6.
(11) (a) An unsaturated, homoleptic Ni(0)-(NHC) complex has been character-
ized by X-ray crystallography, Ni(IMes)2, showing shorter bond lengths
of 1.827 and 1.830 Å, respectively, see: Arduengo, A. J., III; Gamper, S.
F.; Calabrese, J. C.; Davidson, F. J. Am. Chem. Soc. 1994, 116, 4391-
4394. (b) 1:1 Ni(II)-NHC complexes with Ni-C(NHC) distances of
1.9025(16) and 1.8571(13) Å have been reported recently, see: Dible, B.
R.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 872-873.
the infrared data that indicate that IAd (A1 νCO for Ni(CO)2(IAd)
) 2007.2 cm-1) is a better electron donor than ItBu (A1 νCO for
Ni(CO)2(ItBu) ) 2009.7 cm-1). On the basis of the Ni-CO BDE
values used in our calculations, the two Ni-NHC BDE values are
estimated to be accurate, in an absolute sense, to (5 kcal/mol.17
These two Ni-NHC BDEs represent the first experimentally
determined report of such values. Noteworthy is the fact that
equilibria are not established between the saturated Ni(CO)3(NHC)
complexes and CO, even at elevated pressures of CO.18 These
different reactivity profiles of Ni(CO)2(NHC) and Ni(CO)3(NHC)
complexes again highlight the very unique nature of complexes 10
and 11.19
Throughout the recent NHC literature, general statements are
made about the strength of M-NHC bonds, but none have so far
been measured on an absolute basis. Recent accounts of the
M-NHC bond being relatively labile have appeared.20 We suspect
that when sterically bulky NHCs are employed, a significant driving
force leading to dissociation is a relief of steric pressure around
the metal center. This tendency of four-coordinate NiL4 complexes
is well known from the pioneering work of Tolman with phosphine
ligands.6 In the case of the NHC ligands, the presumed Ni(CO)3-
(NHC) (NHC ) IAd, ItBu) complexes also display this tendency.
Loss of CO yields the unsaturated Ni(CO)2(NHC) compounds
shown in Figure 2. Dissociation of IAd (or ItBu) establishes the
reversible equilibrium shown in Figure 3. More detailed investiga-
tions on the reactivity and catalytic uses of complexes 10, 11, and
their Ni(CO)3(NHC) congeners are ongoing.
(12) (a) For the only other example found in the literature, see: Petz, W.;
Weller, F.; Uddin, J.; Frenking, G. Organometallics 1999, 18, 619-626.
(b) For recent examples of three-coordinate Ni(II) complexes, see:
Holland, P. L.; Cundari, T. R.; Perez, L. L.; Eckert, N. A.; Lachicotte, R.
J. J. Am. Chem. Soc. 2002, 124, 14416-14424. (c) For Ni(0) complexes,
see: Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 9976-
9977. Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem. Soc. 2001, 123,
4623-4624. Gosser, L. W.; Tolman, C. A. Inorg. Chem. 1970, 9, 2350-
2353.
(13) The experimental design of the FTIR cell has previously been described:
Bender, B. R.; Kubas, G. J.; Jones, L. H.; Swanson, B. I.; Eckert, J.;
Capps, K. B.; Hoff, C. D. J. Am. Chem. Soc. 1997, 119, 9179-9190.
(14) Disproportionation was also observed when reacting 10 and 11 with tert-
butylisoyanide and certain phosphines; unpublished results.
(15) For details, see the Supporting Information.
(16) Sunderlin, L. S.; Wang, D.; Squires, R. R. J. Am. Chem. Soc. 1992, 114,
2788-2796 and references cited.
(17) The present result can be compared to a Pd-NHC bond energy of 25.6
kcal/mol recently determined by Cloke and Caddick in a (NHC)2Pd(aryl)-
Cl complex: Caddick, S.; Cloke, F. G. N., private communication.
(18) A solution of 39 mg of Ni(CO)3(SiMes) in 10 mL of heptane (distilled
from Na benzophenone under Argon) was prepared in the glovebox and
loaded under argon in the high pressure FTIR cell. A spectrum was run
under argon, and then the cell was filled with 550 psi CO. A spectrum
run immediately after filling, 1 h later, and 1 day later showed no change;
in particular, no builidup of Ni(CO)4 at 2046 cm-1 was observed during
this period. Similar observations were made with Ni(CO)3(IMes) which
also failed to react with CO at 350 psi. See the Supporting Information
for spectra.
Acknowledgment. The National Science Foundation is grate-
fully acknowledged for financial support of this work. Dr. Kenneth
Moloy and DuPont CR&D are especially thanked for the gift of
Ni(CO)4, as are Dr. Emilio Bunel and Eli Lilly and Co. for a
generous donation of amines.
(19) Initial reactivity studies underline this: electron-poor olefins react with
complexes 10 and 11 giving unsaturated, mixed Ni(CO)(NHC)(olefin)
compounds. Allyl halides react instantaneously giving rise to carbonyl-
free, Ni(II)(NHC)(allyl)(X) complexes. These and related studies will be
discussed in detail elsewhere.
(20) (a) Simms, R. W.; Drewitt, M. J.; Baird, M. C. Organometallics 2002,
21, 2958-2963. (b) Jazzar, R. F. R.; Macgregor, S. A.; Mahon, M. F.;
Richards, S. P.; Whittlesey, M. K. J. Am. Chem. Soc. 2002, 124,
4944-4945.
Supporting Information Available: Experimental procedures,
compound characterization, crystallographic and thermochemical data
(PDF). This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Parshall, G. W.; Ittel, S. Homogeneous Catalysis; J. Wiley and Sons:
New York, 1992. (b) Pignolet, L. H., Ed. Homogeneous Catalysis with
JA0362151
9
J. AM. CHEM. SOC. VOL. 125, NO. 35, 2003 10491