10.1002/anie.201901619
Angewandte Chemie International Edition
COMMUNICATION
[8]
For asymmetric construction of C-N axial chirality by asymmetric single
C-H activation, see: ref. 7a; For examples of asymmetric construction of
C-C axial chirality by asymmetric C-H activation, see: a) G. Shan, J.
Flegel, H. Li, C. Merten, S. Ziegler, A. P. Antonchick, H. Waldmann,
Angew. Chem. Int. Ed. 2018, 57, 14250; b) C. G. Newton, E. Braconi, J.
Kuziola, M. D. Wodrich, N. Cramer, Angew. Chem. Int. Ed. 2018, 57,
11040; c) G. Liao, Q. J. Yao, Z. Z. Zhang, Y. J. Wu, D. Y. Huang, B. F.
Shi, Angew. Chem. Int. Ed. 2018, 57, 3661; d) G. Liao, B. Li, H. M.
Chen, Q. J. Yao, Y. N. Xia, J. Luo, B. F. Shi, Angew. Chem. Int. Ed.
2018, 57, 17151; e) Y. S. Jang, Ł. Woźniak, J. Pedroni, N. Cramer,
Angew. Chem. Int. Ed. 2018, 57, 12901; f) Q. Dherbassy, J. P. Djukic, J.
Wencel-Delord, F. Colobert, Angew. Chem. Int. Ed. 2018, 57, 4668; g)
Y. N. Ma, S. X. Li, S. D. Yang, Acc. Chem. Res. 2017, 50, 1480; h) C.
He, M. Hou, Z. Zhu, Z. Gu, ACS Catal. 2017, 7, 5316; i) J. Zheng, W.-J.
Cui, C. Zheng, S.-L. You, J. Am. Chem. Soc. 2016, 138, 5242; j) J.
Zheng, S. L. You, Angew. Chem. Int. Ed. 2014, 53, 13244; k) C. K.
Hazra, Q. Dherbassy, J. Wencel-Delord, F. Colobert, Angew. Chem. Int.
Ed. 2014, 53, 13871; l) D.-W. Gao, Q. Gu, S.-L. You, ACS Catal. 2014,
4, 2741; m) T. Wesch, F. R. Leroux, F. Colobert, Adv. Synth. Catal.
2013, 355, 2139; n) K. Yamaguchi, J. Yamaguchi, A. Studer, K. Itami,
Chem. Sci. 2012, 3, 2165; o) F. Kakiuchi, P. Le Gendre, A. Yamada, H.
Ohtaki, S. Murai, Tetrahedron: Asymmetry 2000, 11, 2647.
In summary, we present the first example of asymmetric
Satoh-Miura type reaction, which also constitutes the first
example of asymmetric construction of C–N axial chirality by the
strategy of asymmetric dual C–H activation. Specifically, a
variety of C–N axially chiral N-aryloxindoles have been
enantioselectively synthesized from N-aryloxindoles and alkynes
in up to 99% yield and with up to 99% ee with a chiral rhodium
catalyst. Preliminary mechanistic studies were performed and a
plausible catalytic cycle was proposed.
Acknowledgements
We thank the National Natural Science Foundation of China
(Grant 21402244).
Keywords: Satoh-Miura type reaction • C-N axial chirality • dual
C-H activation • alkyne • N-aryloxindole
[1]
[2]
G. Bringmann, T. Gulder, T. A. M. Gulder, M. Breuning, Chem. Rev.
2011, 111, 563.
[9]
S. S. Li, L. Qin, L. Dong, Org. Biomol. Chem. 2016, 14, 4554.
a) J. E. Smyth, N. M. Butler, P. A. Keller, Nat. Prod. Rep. 2015, 32,
1562; b) S. R. LaPlante, L. D. Fader, K. R. Fandrick, D. R. Fandrick, O.
Hucke, R. Kemper, S. P. F. Miller, P. J. Edwards, J. Med. Chem. 2011,
54, 7005.
[10] N. Umeda, H. Tsurugi, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2008,
47, 4019.
[11] a) X. Xu, H. Zhao, J. Xu, C. Chen, Y. Pan, Z. Luo, Z. Zhang, H. Li, L.
Xu, Org. Lett. 2018, 20, 3843; b) Q. Li, Y. Wang, B. Li, B. Wang, Org.
Lett. 2018, 20, 7884; c) K. R. Bettadapur, R. Kapanaiah, V. Lanke, K. R.
Prabhu, J. Org. Chem. 2018, 83, 1810; d) A. Biswas, D. Giri, D. Das, A.
De, S. K. Patra, R. Samanta, J. Org. Chem. 2017, 82, 10989; e) X.
Zhang, X. Yu, D. Ji, Y. Yamamoto, A. I. Almansour, N. Arumugam, R. S.
Kumar, M. Bao, Org. Lett. 2016, 18, 4246; f) L. C. Misal Castro, A.
Obata, Y. Aihara, N. Chatani, Chem.—Eur. J. 2016, 22, 1362; g) S.-S.
Li, C.-Q. Wang, W.-H. Li, X.-M. Zhang, L. Dong, Tetrahedron 2016, 72,
2581; h) Z. He, Y. Huang, ACS Catal. 2016, 6, 7814; i) K. Fukuzumi, Y.
Unoh, Y. Nishii, T. Satoh, K. Hirano, M. Miura, J. Org. Chem. 2016, 81,
2474; j) P. Annamalai, W.-Y. Chen, S. Raju, K.-C. Hsu, N. S. Upadhyay,
C.-H. Cheng, S.-C. Chuang, Adv. Synth. Catal. 2016, 358, 3642; k) L.
Shi, X. Zhong, H. She, Z. Lei, F. Li, Chem. Commun. 2015, 51, 7136; l)
A. M. Martinez, J. Echavarren, I. Alonso, N. Rodriguez, R. Gomez
Arrayas, J. C. Carretero, Chem. Sci. 2015, 6, 5802; m) S.-S. Li, C.-Q.
Wang, H. Lin, X.-M. Zhang, L. Dong, Org. Lett. 2015, 17, 3018; n) J. Jia,
J. Shi, J. Zhou, X. Liu, Y. Song, H. E. Xu, W. Yi, Chem. Commun. 2015,
51, 2925; o) J. Zheng, S. L. You, Chem. Commun. 2014, 50, 8204; p)
B.-F. Shi, Z.-C. Qian, J. Zhou, B. Li, Synlett 2014, 25, 1036; q) Z. Shi, C.
Tang, N. Jiao, Adv. Synth. Catal. 2012, 354, 2695; r) G. Song, X. Gong,
X. Li, J. Org. Chem. 2011, 76, 7583; s) J. Wu, X. Cui, X. Mi, Y. Li, Y.
Wu, Chem. Commun. 2010, 46, 6771; t) S. Mochida, M. Shimizu, K.
Hirano, T. Satoh, M. Miura, Chem.—Asian. J. 2010, 5, 847.
[3]
[4]
a) T. Mino, H. Yamada, S. Komatsu, M. Kasai, M. Sakamoto, T. Fujita,
Eur. J. Org. Chem. 2011, 2011, 4540; b) Y.-M. Li, F.-Y. Kwong, W.-Y.
Yu, A. S. C. Chan, Coord. Chem. Rev. 2007, 251, 2119; c) T. Mino, Y.
Tanaka, Y. Hattori, T. Yabusaki, H. Saotome, M. Sakamoto, T. Fujita, J.
Org. Chem. 2006, 71, 7346.
a) Y. B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534; b) P. Renzi,
Org. Biomol. Chem. 2017, 15, 4506; c) P. Loxq, E. Manoury, R. Poli, E.
Deydier, A. Labande, Coord. Chem. Rev. 2016, 308, 131; d) S.
Kinoshita, K. Kamikawa, Tetrahedron 2016, 72, 5202; e) D. Zhang, Q.
Wang, Coord. Chem. Rev. 2015, 286, 1; f) J. Wencel-Delord, A.
Panossian, F. R. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418;
g) I. Takahashi, Y. Suzuki, O. Kitagawa, Org. Prep. Proced. Int. 2014,
46, 1; h) T. W. Wallace, Org. Biomol. Chem. 2006, 4, 3197; i) G.
Bringmann, A. J. P. Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M.
Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384.
[5]
a) J. Rae, J. Frey, S. Jerhaoui, S. Choppin, J. Wencel-Delord, F.
Colobert, ACS Catal. 2018, 8, 2805; b) S. L. Li, C. Yang, Q. Wu, H. L.
Zheng, X. Li, J. P. Cheng, J. Am. Chem. Soc. 2018, 140, 12836; c) J.
W. Zhang, J. H. Xu, D. J. Cheng, C. Shi, X. Y. Liu, B. Tan, Nat.
Commun. 2016, 7, 10677; d) K. Kamikawa, S. Kinoshita, M. Furusyo, S.
Takemoto, H. Matsuzaka, M. Uemura, J. Org. Chem. 2007, 72, 3394;
e) K. Kamikawa, S. Kinoshita, H. Matsuzaka, M. Uemura, Org. Lett.
2006, 8, 1097; f) S. Brandes, M. Bella, A. Kjoersgaard, K. A.
Joergensen, Angew. Chem. Int. Ed. 2006, 45, 1147.
[12] a) O. S. Kim, J. H. Jang, H. T. Kim, S. J. Han, G. C. Tsui, J. M. Joo, Org.
Lett. 2017, 19, 1450; b) M. V. Pham, N. Cramer, Angew. Chem. Int. Ed.
2014, 53, 3484; c) Y. T. Wu, K. H. Huang, C. C. Shin, T. C. Wu,
Chem.—Eur. J. 2008, 14, 6697.
[6]
[7]
a) Y.-B. Wang, S.-C. Zheng, Y.-M. Hu, B. Tan, Nat. Commun. 2017, 8,
15489; b) K. Liu, X. Wu, S. B. J. Kan, S. Shirakawa, K. Maruoka,
Chem.—Asian J. 2013, 8, 3214; c) S. Shirakawa, K. Liu, K. Maruoka, J.
Am. Chem. Soc. 2012, 134, 916.
[13] a) T. Li, C. Zhou, X. Yan, J. Wang, Angew. Chem. Int. Ed. 2018, 57,
4048; b) G. Li, J. Jiang, H. Xie, J. Wang, Chem.—Eur. J. 2019, DOI:
10.1002/chem.201900762.
a) S. Zhang, Q.-J. Yao, G. Liao, X. Li, H. Li, H.-M. Chen, X. Hong, B.-F.
Shi, ACS Catal. 2019, 9, 1956; b) J. Zhang, Y. Zhang, L. Lin, Q. Yao, X.
Liu, X. Feng, Chem. Commun. 2015, 51, 10554; c) M. E. Diener, A. J.
Metrano, S. Kusano, S. J. Miller, J. Am. Chem. Soc. 2015, 137, 12369;
d) K. T. Barrett, S. J. Miller, J. Am. Chem. Soc. 2013, 135, 2963; e) A.
Mori, S. Kinoshita, M. Furusyo, K. Kamikawa, Chem. Commun. 2010,
46, 6846; f) J. Oppenheimer, R. P. Hsung, R. Figueroa, W. L. Johnson,
Org. Lett. 2007, 9, 3969; g) W.-L. Duan, Y. Imazaki, R. Shintani, T.
Hayashi, Tetrahedron 2007, 63, 8529; h) M. Sakamoto, N. Utsumi, M.
Ando, M. Saeki, T. Mino, T. Fujita, A. Katoh, T. Nishio, C. Kashima,
Angew. Chem. Int. Ed. 2003, 42, 4360.
[14] a) N. Ye, H. Chen, E. A. Wold, P. Y. Shi, J. Zhou, ACS Infect. Dis. 2016,
2, 382; b) T. L. Pavlovska, R. G. Redkin, V. V. Lipson, D. V. Atamanuk,
Mol. Divers. 2016, 20, 299.
[15] CCDC 1885638 and 1902396 contain the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
[16] a) M. Kaur, M. Singh, N. Chadha, O. Silakari, Eur. J. Med. Chem. 2016,
123, 858; b) G. S. Singh, Z. Y. Desta, Chem. Rev. 2012, 112, 6104; c)
S. N. Pandeya, S. Smitha, M. Jyoti, S. K. Sridhar, Acta Pharm. 2005,
55, 27.
This article is protected by copyright. All rights reserved.