1252
C. Satgꢀe et al. / Carbohydrate Research 339 (2004) 1243–1254
dissolved in CHCl3 (100 mL) and washed with 0.1 M
HCl (60 mL), 5% NaHCO3 (60 mL) and water (60 mL).
The organic phase was dried on MgSO4, filtered and
evaporated. After chromatography on a silica gel col-
J2;3 10.4, J3;4 3.2 Hz, H-3), 4.72 (d, 2H, J1;2 7.9 Hz, H-1),
4.69 (dd, 2H, J5;6a 6.6, J6a;6b 11.4 Hz, H-6a), 4.61 (dd, 2H,
J5;6b 6.4, J6a;6b 11.4 Hz, H-6b), 4.35 (m, 2H, H-4), 4.07
0
0
0
0
(te, 2H, J4;5;6 6.5 Hz, H-5), 3.91 (dt, 2H, J1 a;2 6.2, J1 a;1 b
9.7 Hz, H-10a), 3.52 (dt, 2H, J1 b;2 6.7, J1 a;1 b 9.6 Hz, H-
10b), 1.93 (m, 4H, H-90), 1.51 (m, 4H, H-20), 1.23 (m,
24H, H-30–H-80); ESMS: 1283.43 [M+Na]þ. Anal. Calcd
for C74H84O18: C, 70.46; H, 6.71. Found: C, 69.27; H,
7.06.
0
0
0
0
umn (9:1 CHCl3–petroleum ether) a yellow paste was
20
D
obtained (0.86 g, 1.33 mmol, 35%); ½a +33.4 (c 0.99,
CH2Cl2); Rf 0.47 (49:1 CHCl3–EtOH); IR (KBr): m 3487
(alcohol), 3062 (aromatics), 3018 (terminal olefin), 2849
(CH2) and 1717 (ester); 1H NMR (CDCl3): d 7.3–8.1 (m,
15H, benzoyl), 5.80 (m, 1H, H-100), 5.75 (dd, 1H, J1;2
8.0, J2;3 10.2 Hz, H-2), 5.35 (dd, 1H, J2;3 10.3, J3;4 3.2 Hz,
H-3), 4.96 (m, 2H, H-110), 4.71 (d, 1H, J1;2 7.9 Hz, H-1),
4.69 (dd, 1H, J5;6a 6.6, J6a;6b 11.4 Hz, H-6a), 4.61 (dd, 1H,
J5;6b 6.4, J6a;6b 11.4 Hz, H-6b), 4.35 (dd, 1H, J3;4 3.2, J4;5
5.2 Hz, H-4), 4.07 (te, 1H, J4;5;6 6.5 Hz, H-5), 3.91 (dt,
3.2.17. 1,20-Bis(2,3,6-tri-O-benzoyl-a-D-galactopyrano-
syloxy)eicosane (11a). Compound 10a (0.15 g,
0.12 mmol) was transformed into 11a using the same
procedure as for 6a. A yellow oil (0.13 g, 0.10 mmol,
20
D
86%) was obtained; ½a +122.7 (c 0.42, CHCl3); Rf 0.21
1H, J1 a;2 6.2, J1 a;1 b 9.7 Hz, H-10a), 3.52 (dt, 1H, J1 b;2
(49:1 CHCl3–EtOH); IR (KBr): m 3442 (alcohol), 3070
(aromatics), 2849 (CH2) and 1717 (ester); 1H NMR
(CDCl3): d 7.3–8.1 (m, 30H, benzoyl), 5.76 (dd, 2H, J2;3
10.6, J3;4 3.0 Hz, H-3), 5.67 (dd, 2H, J1;2 3.6, J2;3 10.6 Hz,
H-2), 5.30 (d, 2H, J1;2 3.6, H-1), 4.67 (dd, 2H, J5;6a 5.8,
J6a;6b 11.5 Hz, H-6a), 4.54 (dd, 2H, J5;6b 6.8, J6a;6b
11.4 Hz, H-6b), 4.39 (m, 4H, H-4 and H-5), 3.76 (dt, 2H,
0
0
0
0
0
0
6.6, J1 a;1 b 9.6 Hz, H-10b), 2.01 (q, 2H, J8 ;9 ;10 6.9 Hz, H-
90), 1.51 (m, 2H, H-20), 1.17 (m, 12H, H-30–H-80); ESMS:
m=z 645.30. Anal. Calcd for C38H44O9: C, 70.79; H, 6.88.
Found: C, 70.62; H, 7.01.
0
0
0
0
0
3.2.15. 1,20-Bis(2,3,6-tri-O-benzoyl-a-D-galactopyrano-
J1 a;2 6.4, J1 a;1 b 9.8 Hz, H-10a), 3.45 (dt, 2H, J1 b;2 6.6,
0
0
0
0
0
0
syloxy)eicos-10-ene (10a). Compound 9a (0.25 g,
0.39 mmol) was dissolved in 1.8 mL CH2Cl2 degassed
under Ar. Grubbs’ catalyst (0.03 g, 0.04 mmol) was dis-
solved in the same solvent (10 mL) and added dropwise.
Reaction lasted 21 h. After evaporation the product was
purified on a silica gel column (49:1 CHCl3–EtOH). A
yellow paste was obtained (0.39 g, 0.31 mmol,
yield ¼ 80%); Rf 0.21 (49:1 CHCl3–EtOH); IR (KBr): m
3487 (alcohol), 3062 (aromatics), 3018 (internal olefin),
2849 (CH2), 1721 (ester), 971 (E olefin) and 711 (Z
J1 a;1 b 9.8 Hz, H-10b), 1.56 (m, 4H, H-20), 1.23 (m, 32H,
H-30–H-100); ESMS: m=z 1285.58 [M+Na]þ. Anal. Calcd
for C74H86O18: C, 70.35; H, 6.86. Found: C, 69.91; H,
6.97.
0
0
3.2.18. 1,20-Bis(2,3,6-tri-O-benzoyl-b-D-galactopyrano-
syloxy)eicosane (11b). Compound 10b (0.16 g,
0.13 mmol) was transformed into 11b using the same
procedure as for 6a. A yellow oil (0.14 g, 0.11 mmol,
20
D
1
olefin); H NMR (CDCl3): d 7.3–8.1 (m, 30H, benzoyl),
88%) was obtained; ½a )121.1 (c 1.43, CHCl3); Rf 0.33
5.75 (dd, 2H, J2;3 10.6, J3;4 3.0 Hz, H-3), 5.67 (dd, 2H, J1;2
3.6, J2;3 10.6 Hz, H-2), 5.37 (m, 2H, H-100), 5.30 (d, 2H,
J1;2 3.6, H-1), 4.67 (dd, 2H, J5;6a 5.8, J6a;6b 11.4 Hz, H-
6a), 4.54 (dd, 2H, J5;6b 6.7, J6a;6b 11.3, H-6b), 4.39 (m,
(49:1 CHCl3–EtOH); IR (KBr): m 3452 (alcohol), 3068
(aromatics), 2836 (CH2) and 1718 (ester); 1H NMR
(CDCl3): d 7.3–8.1 (m, 30H, benzoyl), 5.75 (dd, 2H, J1;2
7.9, J2;3 10.3 Hz, H-2), 5.35 (dd, 2H, J2;3 10.3, J3;4 3.2 Hz,
H-3), 4.71 (d, 2H, J1;2 7.9 Hz, H-1), 4.69 (dd, 2H, J5;6a
6.6, J6a;6b 11.5 Hz, H-6a), 4.61 (dd, 2H, J5;6b 6.4, J6a;6b
11.4 Hz, H-6b), 4.35 (dd, 2H, J3;4 3.2, J4;5 5.3 Hz, H-4),
0
0
0
0
4H, H-4 and H-5), 3.75 (dt, 2H, J1 a;2 6.4, J1 a;1 b 9.8 Hz,
H-10a), 3.44 (dt, 2H, J1 b;2 6.5, J1 a;1 b 9.7 Hz, H-10b), 1.93
(m, 4H, H-90), 1.55 (m, 4H, H-20), 1.18 (m, 24H, H-30–H-
80); ESMS: m=z 1283.43 [M+Na]þ. Anal. Calcd for
C74H84O18: C, 70.46; H, 6.71. Found: C, 70.15; H, 6.82.
0
0
0
0
0
0
4.07 (te, 2H, J4;5;6 6.5 Hz, H-5), 3.91 (dt, 2H, J1 a;2 6.2,
J1 a;1 b 9.7 Hz, H-10a), 3.52 (dt, 2H, J1 b;2 6.7, J1 a;1 b
9.6 Hz, H-10b), 1.51 (m, 4H, H-20), 1.20 (m, 32H, H-30–
H-100); ESMS: m=z 1285.45 [M+Na]þ. Anal. Calcd for
C74H86O18: C, 70.35; H, 6.86. Found: C, 68.83; H, 6.63.
0
0
0
0
0
0
3.2.16. 1,20-Bis(2,3,6-tri-O-benzoyl-b-D-galactopyrano-
syloxy)eicos-10-ene (10b). Compound 9b (0.25 g,
0.39 mmol) was dissolved in 1.8 mL of CH2Cl2 degassed
under Ar. Grubbs’ catalyst (0.03 g, 0.04 mmol) was dis-
solved in the same solvent (10 mL) and added dropwise.
Reaction lasted 21 h. After evaporation, the product was
purified on a silica gel column (49:1 CHCl3–EtOH). A
yellow paste was obtained (0.38 g, 0.30 mmol, 77%); Rf
0.33 (49:1 CHCl3–EtOH); IR (KBr): m 3487 (alcohol),
3062 (aromatics), 3031 (internal olefin), 2849 (CH2),
3.2.19. Dec-9-enylisocyanate (13). 10-Undecenyl chloride
(12; 2.5 mL, 2.36 g, 18 mmol) was dissolved in 100 mL of
acetone. Sodium azide (3.1 g, 49 mmol) was dissolved in
10 mL cold water (T < 10 ꢀC) and 12 was added drop-
wise. The reaction lasted 2 h at 10–15 ꢀC. Then, 300 mL
cold petroleum ether were added and the medium was
stirred until NaCl was dissolved. The organic phase was
dried on MgSO4 and distilled under diminished pres-
sure. A colourless liquid was obtained (1.47 g, 8.1 mmol,
45%); d 0.82; IR (KBr): m 3080 (terminal olefin), 2849
1
1722 (ester), 988 (E olefin) and 706 (Z olefin); H NMR
(CDCl3): d 7.3–8.1 (m, 30H, benzoyl), 5.75 (dd, 2H, J1;2
7.9, J2;3 10.3 Hz, H-2), 5.36 (m, 2H, H-100), 5.35 (dd, 2H,