D. J. Wardrop et al. / Tetrahedron Letters 45 (2004) 4229–4231
4231
lactam (8) has also been prepared in 14 steps with an
overall yield of 16%, which compares favorably with
Luzzio’s synthesis of this target molecule (15 steps, 9%
yield).4a Since the transformation of 8 into ( )-perhy-
drohistrionicotoxin (2) has previously been reported,10
our synthesis of (+)-8 also constitutes a formal synthesis
of ())-perhydrohistrionicotoxin.
Acknowledgements
We thank the National Institutes of Health (GM-67176)
for financial support. W.Z. thanks the University of
Illinois for a University Graduate Fellowship.
Scheme 4. Reagents and conditions: (a) NaBH4, MeOH, CH2Cl2,
0 ꢁC, 15 min (99%);(b) SmI 2, THF–HMPA (25:1), rt, 30 min;(c)
TBAF, THF, rt, 20 min;(d) SmI 2, EtCO2H, THF, ultrasonication, rt,
28 h (80%, three steps);(e) (COCl) 2, DMSO, CH2Cl2, )60 ꢁC, then
Et3N, )60 ꢁC fi rt, 2 h (81%).
References and notes
mixture of spirodienones was then hydrogenated over
PtO2 to provide vinylogous ester 18, again, as a mixture
of diastereomers. Cyclohexanone 17 was also generated
in this reaction and found to be a single diastereomer by
1H NMR spectroscopy. In order to prevent formation of
this undesired product, it was necessary to strictly limit
the duration of this reaction. Luche reduction of 18 and
exposure of the resulting allylic alcohol to aqueous HCl
then provided the transposed enone, which was hydro-
genated to provide ketone 7 as a single diastereomer.
This ketone is suitably functionalized to allow intro-
duction of the second piperidine ring and the C-2 n-hexyl
side chain of fasicularin (3) and as such represents a
useful platform from which to complete the asymmetric
synthesis of this natural product.
1. Daly, J. W. J. Nat. Prod. 1998, 61, 162.
2. Patil, A. D.;Freyer, A. J.;Reichwein, R.;Carte, B.;
Killmer, L. B.;Faucette, L.;Johnson, R. K.;Faulkner, D.
J. Tetrahedron Lett. 1997, 38, 363.
3. For recent approaches to the 1-azaspiro[5.5]undecane ring
system, see: (a) Davison, E. C.;Fox, M. E.;Holmes, A. B.;
Roughley, S. D.;Smith, C. J.;Williams, G. R. M.;Davies,
J. E.;Raithby, P. R.;Adams, J. P.;Forbes, I. T.;Press, N.
J.;Thompson, M. J. J. Chem. Soc., Perkin Trans. 1 2002,
1494;(b) Jachak, S. M.;Karche, N. P.;Dhavale, D. D.
Tetrahedron Lett. 2001, 42, 4925;(c) David, M.;Dhimane,
H.;Vanucci-Bacque, C.;Lhommet, G. Heterocycles 2001,
55, 941;(d) Ciblat, S.;Canet, J. L.;Troin, Y. Tetrahedron
Lett. 2001, 42, 4815;(e) Stockman, R. A. Tetrahedron
Lett. 2000, 41, 9163.
4. For recent synthetic work and leading references on the
histrionicotoxins, see: (a) Luzzio, F. A.;Fitch, R. W. J.
Org. Chem. 1999, 64, 5485;(b) Williams, G. M.;Roughley,
S. D.;Davies, J. E.;Holmes, A. B. J. Am. Chem. Soc.
1999, 121, 4900;(c) Comins, D. L.;Zhang, Y. M.;Zheng,
X. L. J. Chem. Soc., Chem. Commun. 1998, 2509;(d)
Tanner, D.;Hagberg, L. Tetrahedron 1998, 54, 7907.
5. Abe, H.;Aoyagi, S.;Kibayashi, C. J. Am. Chem. Soc.
2000, 122, 4583.
6. Maeng, M.-H.;Funk, R. L. Org. Lett. 2002, 4, 331.
7. Fenster, M. D. B.;Dake, G. R. Org. Lett. 2003, 5, 4313.
8. (a) Wardrop, D. J.;Basak, A. Org. Lett. 2001, 3, 1053;(b)
Wardrop, D. J.;Zhang, W. Org. Lett. 2001, 3, 2353;(c)
Wardrop, D. J.;Landrie, C.;Ortz, J. A. Synlett 2003, 9,
1352.
9. Wardrop, D. J.;Burge, M. S.;Zhang, W.;Ortz, J. A.
Tetrahedron Lett. 2003, 43, 2587.
10. Aratani, M.;Dunkerton, L. V.;Fukuyama, T.;Kishi, Y.;
Kakoi, H.;Sugiura, S.;Inoue, S. J. Org. Chem. 1975, 40,
2009.
11. Kikugawa, Y. Rev. Heteroatom Chem. 1996, 15, 263.
12. Kanger, T.;Niidas, P.;Mrisepp, A.-M.;Pehk, T.;Lopp,
M. Tetrahedron: Asymmetry 1998, 9, 2499.
13. Whiting, D. A. In Comprehensive Organic Synthesis:
Selectivity, Strategy, and Efficiency in Modern Organic
Chemistry;Trost, B. A.;Fleming, I., Eds.;Pergamon:
Oxford, 1991;Vol. 3, pp 803–820.
In order to access the (+)-Kishi lactam (8), it was now
necessary to expunge the N-methoxy and a-triisoprop-
ylsilyloxy groups from compound 7 (Scheme 4). To
avoid the reductive cleavage of the N–C6 bond, the ke-
tone group of 7 was reduced with sodium borohydride to
provide the corresponding alcohol as a 3:1 mixture of
anti and syn diastereomers. While a priori, we envisioned
that cleavage of the N–O bond and the a-triisopropyl-
silyloxy group could be accomplished in one pot, using
samarium diiodide, treatment of the alcohol mixture
derived from 7 with SmI2 mediated only N–O bond
cleavage and provided 19 in high yield. Nevertheless,
after removal of the TIPS protecting group, treatment
with SmI2 in the presence of propionic acid now fur-
nished 20 as a single diastereomer in excellent overall
yield. Finally, Swern oxidation of 20 provided crystalline
(+)-8 in good yield. A comparison of the spectroscopic
and physical data collected for this material with that
previously reported confirmed its identity. Significantly,
the optical rotation of 8 {½aꢁ25 +60.4 (c 0.48, CHCl3)} was
D
25
close to the value reported by Luzzio and Fitch {½aꢁ
D
+60.3 (c 0.54, CHCl3)}.4a This observation therefore
confirms that the spirocyclization of amide 14 proceeded
with anti selectivity, as anticipated.
14. For examples of the trapping of arenium intermediates,
generated upon ipso nitration, see: Fischer, A.;Henderson,
G. N.;Iyer, L. M. Can. J. Chem. 1985, 63, 2390.
15. Braun, N. A.;Ousmer, M.;Bray, J. D.;Bouchu, D.;
Peters, K.;Peters, E. M.;Ciufolini, M. A. J. Org. Chem.
2000, 65, 4397.
In summary, we report the application of a stereose-
lective nitrenium ion cyclization to the asymmetric
preparation of a useful intermediate for the synthesis of
the marine natural product fasicularin. The (+)-Kishi