Macromolecules, Vol. 37, No. 19, 2004
NLO Active Fluorinated Poly(arylene ether)s 7095
Ta ble 1. P er cen ta ges of Ch r om op h or es a n d Com p osition s of P 1 a n d P 2
elemental analysis [%]: found (calcd)
a
b
polymer
x
y
z
dm (%)
dw (%)
C
H
N
P 1
P 2
0.625
0.39
0.37
0.60
0.005
0.01
162
138
42.3
42.3
61.26 (60.93)
56.89 (57.28)
3.32 (3.33)
3.06 (2.72)
9.25 (9.96)
6.15 (6.93)
a
b
Molar percentages of the chromophores. Weight percentages of the chromophores.
Ta ble 2. Molecu la r Weigh ts a n d Th er m a l P r op er ties of P ,
P 1 a n d P 2
crystal served as a reference. The NLO coefficients d33 were
deduced by comparing the intensities of the SHG signals of
the poled film with those of the quartz crystal.
Td (°C)
a
Mw
polydispersity
polymer (×104)
(Mw/Mn)
Tg (°C) in airc in argond
b
Ack n ow led gm en t. We are grateful to the National
Key Fundamental Research Program of China and the
National Science Foundation of China for the financial
support.
P
P 1
P 2
4.87
21.27
24.85
2.31
3.22
2.68
198
186
192
347
288
263
347
291
269
a
Molecular weights were determined by GPC-MASLS at 25 °C
b
with THF as the eluent. Tg’s were determined by DSC at a
heating rate of 15 °C/min under nitrogen with a gas flow of 20
mL/min. c 5% weight loss temperatures were detected at a heating
Refer en ces a n d Notes
(1) Marder, S. R.; Kippelen, B.; J en, A. K.-Y.; Peyghambarian,
N. Nature (London) 1997, 388, 845.
d
rate of 20 °C/min under static air. 5% weight loss temperatures
were detected at a heating rate of 20 °C/min under argon with a
gas flow of 50 mL/min.
(2) Moerner, W. E.; J epsen, A. G.; Thompson, C. L. Annu. Rev.
Mater. Sci. 1997, 32, 585.
(3) Burland, D. M.; Miller, R. D.; Walsh, C. A. Chem. Rev. 1994,
94, 31.
Ta ble 3. NLO P r op er ties of P 1 a n d P 2
(4) Shi, Y.; Zhang, C.; Zhang, H.; Bechtel, J . H.; Dalton, L. R.;
Robinson, B. H.; Steier, W. H. Science 2000, 288, 119.
(5) Luo, J .; Liu, S.; Haller, M.; Liu, L.; Ma, H.; J en, A. K.-Y. Adv.
Mater. 2002, 14, 1763.
a
b
d
polymer Topt (°C) ls (µm) Φc d33 (pm/V) d33(∞)e (pm/V)
P 1
P 2
170-180
150-160
0.44
0.72
0.14
0.18
60
31
10
8
(6) Marks, T. J .; Ratner, M. A. Angew. Chem., Int. Ed. Engl.
Optimal poling temperatures of the polymer films. b Thickness
a
1995, 34, 155.
of the polymer films. c Order parameters of the poled films.
(7) Zhang, C.; Wang, C.; Dalton, L. R.; Zhang, H.; Steier, W. H.
Macromolecules 2001, 34, 253.
(8) Ma, H.; Wu, J .; Herguth, P.; Chen, B.; J en, A. K.-Y. Chem.
d
Resonant NLO coefficient values determined by SHG measure-
ments. e Nonresonant NLO coefficient values estimated by the
approximate two-level model.
Mater. 2000, 12, 1187.
(9) Li, Z.; Qin, J .; Li, S.; Ye, C.; Luo, J .; Cao, Y. Macromolecules
2002, 35, 9232.
(10) Taylor, D. K.; Samulski, E. T. Macromolecules 2000, 33, 2355.
(11) Ma, H.; Wu, J .; Herguth, P.; Chen, B.; J en, A. K.-Y. Chem.
Mater. 2000, 12, 1187.
purified by being dissolved/precipitated from chloroform/
methanol twice. After being dried in vacuo at 60 °C overnight,
0.29 g of red fibrous solid was obtained; yield 61.7%. 1H NMR
(CDCl3, TMS int) δ (ppm): 1.25 (m, 3H, -CH3), 3.55 (m, 2H,
-NCH2CH3), 3.80 (m, 2H, -NCH2CH2-), 4.03 (m, 2H, -CH2-),
4.53 (m, 2H, -NCH2CH2-), 6.79 (m, 4H, ArH), 7.37 (m, 2H,
ArH), 7.83 (m, 4H, ArH), 8.23 (m, 4H, ArH), 8.76 (s, 1H, -CH
) C(CN)-), 10.56 (s, 1H, -CHO). 19F NMR (CDCl3, CF3COOH
int) δ (ppm): -137.08, -152.55.
P 2 was prepared in the similar way of P 1 and was obtained
as an orange fibrous solid; yield 86.3%. 1H NMR (CDCl3, TMS
int) δ (ppm): 1.19 (m, 3H, -CH3), 3.50 (m, 2H, -NCH2CH3),
3.73 (m, 2H, -NCH2CH2-), 4.45 (m, 2H, -CH2-), 6.72 (m,
4H, ArH), 7.33 (m, 2H, ArH), 7.74 (m, 4H, ArH), 8.70 (s, 1H,
-CHdC(CN)-), 10.50 (s, 1H, -CHO). 19F NMR (CDCl3, CF3-
COOH int) δ (ppm): -137.28, -152.23, -152.78, -153.70,
-163.67.
P olym er F ilm P r ep a r a tion . P 1 and P 2 were dissolved
in cyclopentanone, and the solution (10 wt %) was filtered
through syringe filters. Polymer films were obtained by spin-
coating the polymer solution onto indium tin oxide (ITO)-
coated glass substrates (which were cleaned in the ultrasonic
bath with DMF, THF, ethanol, and distilled water subse-
quently). The residual solvent was removed by heating the
films in a vacuum oven at 70 °C for 3 days. The thickness of
the films of P 1 and P 2 was estimated to be 0.44 and 0.72 µm,
respectively, as listed in Table 3.
Ch a r a cter iza tion of P oled F ilm s. The second-order opti-
cal nonlinearities of P 1 and P 2 were determined by the in-
situ second-harmonic generation (SHG) measurement tech-
nique. Thus, a closed temperature-controlled oven having
optical windows and equipped with three needle electrodes was
used. The films, which were kept at 45 ° to the incident beam,
were poled inside the oven, and the SHG intensity was
monitored simultaneously. The poling condition was as fol-
lows: voltage, 7.6 kV at the needle point; gap distance, 0.8
cm. The SHG measurements were carried out with a Nd:YAG
laser operating with a 10 Hz repetition rate and an 8 ns pulse
width at 1064 nm fundemental wavelength. A Y-cut quartz
(12) Mcculloch, I.; Yoon, H. J . Polym. Sci., Part A: Polym. Chem.
1995, 33, 1177.
(13) Verbiest, T.; Burland, D. M.; J urich, M. C.; Lee, V. Y.; Miller,
R. D.; Volksen, W. Science 1995, 268, 1604.
(14) Zhang, C.; Wang, C.; Zhou, C.; Lee, M.; Chen, M.; Dalton, L.
R. Polym. Prepr. 1999, 40, 912.
(15) Ma, H.; Wang, X.; Wu, X.; Liu, S.; J en, A. K.-Y. Macromol-
ecules 1998, 31, 4049.
(16) Ma, H.; J en, A. K.-Y.; Dalton, L. R. Adv. Mater. 2002, 14,
1339.
(17) Goodwin, A. A.; Mercer, F. W.; McKenzie, M. T. Macromol-
ecules 1997, 30, 2767.
(18) Nagal, J . K. J . Am. Chem. Soc. 1990, 112, 4740.
(19) Hudliky, M. Chemistry of Organic Fluorine Compounds, 2nd
ed.; Ellis Horwood: Chichester, 1992; p 531.
(20) Lu, J .; Miyatake, K.; Hill, A. R.; Hay, A. S. Macromolecules
2001, 34, 5860.
(21) Miyatake, K.; Hay, A. S. J . Polym. Sci., Part A: Polym. Chem.
2001, 39, 3770.
(22) Do, J . Y.; Park, S. K.; Park, S.; J u, J .-J .; Lee, M.-H. Polym.
Prepr. 2003, 44 (1), 821.
(23) Ma, H.; Wang, X.; Qu, X.; Liu, S.; J en, A. K.-Y. Macromol-
ecules 1998, 31, 4049.
(24) Ma, H.; Chen, B.; Sassa, T.; Dalton, L. R.; J en, A. K.-Y. J .
Am. Chem. Soc. 2001, 123, 986.
(25) Ma, H.; Liu, S.; Luo, J .; Suresh, S.; Liu, L.; Kang, S. H.;
Haller, M.; Sassa, T.; Dalton, L. R.; J en, A. K.-Y. Adv. Funct.
Mater. 2002, 12, 565.
(26) Luo, J .; Haller, M.; Li, H.; Tang, H.-Z.; J en, A. K.-Y.; J akka,
K.; Chou, C.-H.; Shu, C.-F. Macromolecules 2004, 37, 248.
(27) Luo, J .; Haller, M.; Li, H.; Kim, T.-D.; J en, A. K.-Y. Adv.
Mater. 2003, 15, 1635.
(28) Lee, H.-J .; Lee, E.-M.; Lee, M.-H.; Oh, M.-C.; Ahn, J .-H.; Han,
S. G.; Kim, H. G. J . Polym. Sci., Part A: Polym. Chem. 1998,
36, 2881.
(29) Lee, H.-J .; Lee, M.-H.; Oh, M.-C.; Ahn, J .-H.; Han, S. G. J .
Polym. Sci., Part A: Polym. Chem. 1999, 37, 2355.
(30) Kim, J .-P.; Lee, W.-Y.; Kang, J .-W.; Kwon, S.-K.; Kim, J .-J .;
Lee, J .-S. Macromolecules 2001, 34, 7817.