Raible et al.
in vitro at low micromolar concentrations.9 However, in
vivo GDA is a 100 nM inhibitor of the Hsp90 multiprotein
complex.10 The poor bioavailability and high cytotoxicity
of GDA has led to the development of 17-allylamino
geldanamycin (17-AAG, 2), which recently entered Phase
I clinical trials for the treatment of several cancers.9a,11
Although better tolerated, 17-AAG exhibits toxicity un-
related to Hsp90 inhibition and has formulation difficul-
ties.4,12
F IGURE 2. Affinity purification of GDA-binding proteins.
have a predisposed bent conformation.14,16 The flexibility
observed in the GDA macrocycle is likely to allow GDA
to bind other ATP-dependent proteins in a similar
fashion. The toxicity of GDA and analogues unrelated to
Hsp90 inhibition may be the result of binding to similarly
shaped ATP binding motifs. The design of analogues with
selective affinity for Hsp90 requires the identification of
other proteins that bind GDA as a control for the design
of future Hsp90 inhibitors.
In an effort to identify GDA-binding proteins, biotin-
ylated derivatives of GDA have been prepared for affinity
purification of these proteins. Addition of neutravidin-
containing resin enables the isolation of GDA binding
proteins (Figure 2).
Examination of the cocrystal structure of GDA bound
to both bovine13a and yeast14a Hsp90 revealed that both
the free hydroxyl and carbamate group reside deep within
the ATP binding site and thus were not suitable moieties
for the incorporation of biotinylated linkers. Methoxy
quinones undergo nucleophilic substitution reactions,9c,d,18
and provide an alternative method for biotin introduction.
The cocrystal structure of GDA bound to Hsp90 shows
the quinone moiety to reside near the protein-solution
interface of the nucleotide binding domain, with the
methoxy group directed away from the interior of the
protein. Replacement of the methoxy group with an
appropriate tether19 provides a solvent exposed biotin
GDA and 17-AAG inhibit Hsp90 by competing with
ATP binding to a highly conserved nucleotide binding site
located near the N-terminus of the homodimeric pro-
tein.13 Unlike most ATP binding sites, the N-terminal
ATP binding site has a unique bent conformation, requir-
ing both ATP and GDA to adopt a folded or puckered
shape upon binding to Hsp90, as determined by cocrystal
structures.13,14 Although this bent shape may lead to
some selectivity of GDA for Hsp90 versus other ATP
binding proteins, it is likely that GDA shares a high
affinity for proteins other than Hsp90, as a consequence
of normal evolutionary processes.15 Furthermore, the bent
conformation of GDA differs significantly from its native
crystallographic form.14 It has been suggested that this
change in conformation results in an affinity of GDA for
Hsp90 lower than that of other Hsp90 inhibitors, which
(8) Mimnaugh, E. G.; Worland, P. J .; Whitesell, L.; Neckers, L. M.
J . Biol. Chem. 1995, 270, 28654-28659.
(9) (a) Grenert, J . P.; Sullivan, W. P.; Fadden, P.; Haystead, T. A.
J .; Clark, J .; Mimnaugh, E.; Krutzsch, H.; Ochel, H.-J .; Schulte, T.
W.; Sausville, E.; Neckers, L. M.; Toft, D. O. J . Biol. Chem. 1997, 272,
23843-23850. (b) Miller, P.; DiOrio, C.; Walter, C.; Moyer, J . D. Proc.
Am. Assoc. Cancer Res. 1993, 34, 2047. (c) Schnur, R. C.; Corman, M.
L.; Gallaschun, R. J .; Cooper, B. A.; Dee, M. F.; Doty, J . L.; Muzzi, M.
L.; Moyer, J . D.; DiOrio, C. I.; Barbacci, E. G.; Miller, P. E.; O’Brien,
A. T.; Morin, M. J .; Foster, B. A.; Pollack, V. A.; Savage, D. M.; Sloan,
E. D.; Pustilnik, L. R.; Moyer, M. P. J . Med. Chem. 1995, 38, 3806-
3812. (d) Schnur, R. C.; Corman, M. L.; Gallaschun, R. J .; Cooper, B.
A.; Dee, M. F.; Doty, J . L.; Muzzi, M. L.; DiOrio, C. I.; Barbacci, E. G.;
Miller, P. E.; Pollack, V. A.; Savage, D. M.; Sloan, D. E.; Pustilnik, L.
R.; Moyer, J . D.; Moyer, M. P. J . Med. Chem. 1995, 38, 3813-3820.
(e) Panaretou, B.; Prodromou, C.; Roe, S. M.; O’Brien, R.; Ladbury,
Piper, P. W.; Pearl, L. H. EMBO J . 1998, 17, 4829-4836. (f) Chiosis,
G.; Huezo, H.; Rosen, N.; Mimnaugh, E.; Whitesell, L.; Neckers, L.
Mol. Cancer Ther. 2003, 2, 123-129.
SCHEME 1. Syn th esis of GDA Am in es
(10) Kamal, A.; Thao, L.; Sensintaffar, J .; Zhang, L.; Boehm, M. F.;
Fritz, L. C.; Burrows, F. J . Nature 2003, 425, 407-410.
(11) (a) Supko, J . G.; Hickman, R. L.; Grever, M. R.; Malspeis, L.
Cancer Chemo. Pharm. 1995, 36, 305-315. (b) Wilson, R. H.; Takimoto,
C. H.; Agnew, E. B. Proc. Am. Soc. Clin. Oncol. 2001, 20, 325. (c)
Banerji, U.; O’Donnell, A.; Scurr, M. Proc. Am. Soc. Clin. Oncol. 2001,
20, 326. (d) Munster, P. N.; Tong, W.; Schwartz, L. Proc. Am. Soc. Clin.
Oncol. 2001, 20, 327. (e) Erlichman, C.; Toft, D.; Reid, J . Proc. Am.
Assoc. Cancer Res. 2001, 42, 4474.
(12) (a) Sausville, E. A.; Tomaszewski, J . E.; Ivy, P. Curr. Cancer
Drug Targets 2003, 3, 377-383. (b) Neckers, L. M. Drug Res. Updates
2000, 3, 203-205. (c) Chiosis, G.; Lucas, B.; Shtil, A.; Huezo, H.; Rosen,
N. Bio. Med. Chem. 2002, 10, 3555-3564. (d) Chiosis, G.; Lucas, B.;
Huezo, H.; Solit, D.; Bassa, A.; Rosen, N. Curr. Cancer Drug Targets
2003, 3, 371-376. (e) Neckers, L. Trends Mol. Med. 2002, 8, S55-
S61. (f) Dikalov, S.; Landmesser, U.; Harrison, D. G. J . Biol. Chem.
2002, 277, 25480-25485. (g) Sreedhar, A. S.; Mihaly, K.; Pato, B.;
Schnaider, T.; Stetak, A.; Kis-Petik, K.; Fidy, J .; Simonics, T.; Maraz,
A.; Csermely, P. J . Biol. Chem. 2003, 278, 35231-3523140. (h)
Workman, P. Curr. Cancer Drug Targets 2003, 3, 297-300.
(13) (a) Stebbins, C. E.; Russo, A. A.; Scneider, C.; Rosen, N.; Hart,
F. U.; Pavletich, N. P. Cell 1997, 89, 239-250. (b) Prodromou, C.; Roe,
S. M.; O’Brien, R.; Ladbury, J . E.; Piper, P. W.; Pearl, L. H. Cell 1997,
90, 65-75. (c) Panaretou, B.; Prodromou, C.; Roe, S. M.; O’Brien, R.;
Ladbury, Piper, P. W.; Pearl, L. H. EMBO J . 1998, 17, 4829-4836.
(14) (a) Roe, S. M.; Prodromou, C.; O’Brien, R.; Ladbury, J . E.; Piper,
P. W.; Pearl, L. H. J . Med. Chem. 1999, 42, 260-266. (b) J ez, J . M.;
Chen, J .; Rastelli, G.; Stroud, R. M.; Santi, D. V. Chem. Biol. 2003,
10, 361-368.
(16) (a) Schnur, R. C.; Corman, M. L. J . Org. Chem. 1994, 59, 2581-
2584. (b) Cutler, H. G.; Arrendale, R. F.; Springer, J . P.; Cole, P. D.;
Roberts, R. G.; Hanlin, R. T. Agric. Biol. Chem. 1987, 51, 3331-3338.
(17) Whitesell, L.; Mimnaugh, E. G.; De Costa, B.; Myers, C. E.;
Neckers, L. M. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 8324-8328.
(18) Sasaki, K.; Inoue, Y. U.S. Patent 4,261,989.
(19) (a) Kuduk, S. D.; Harris, C. R.; Zheng, F. F.; Sepp-Lorenzino,
L.; Querfelli, Q.; Rosen, N.; Danishefsky, S. J . Bioorg. Med. Chem. Lett.
2000, 10, 1303-1306. (b) Kuduk, S. D.; Zheng, F. F.; Sepp-Lorenzino,
L.; Rosen, N.; Danishefsky, S. J . Bioorg. Med. Chem. Lett. 1999, 9,
1233-1238.
(15) Chene, P. Nat. Rev. Drug Discuss. 2002, 1, 665-673.
4376 J . Org. Chem., Vol. 69, No. 13, 2004