COMMUNICATIONS
BF3 ´ Et2O afforded the desired aryl glycoside 19 in excellent
yield (95%) and with high stereoselectivity (b:a ꢀ 13:1).
Debenzoylation gave direct access to glycosyl acceptor 20,
setting the stage for coupling with glycosyl fluoride 16. A
combination of BF3 ´ Et2O and Me3SiOTf was found to be
highly effective for activation of 16, furnishing, upon coupling
with 20, the desired a-glycoside 21 in 89% yield (based on
90% conversion) and with a stereoselectivity of about 10:1
(Table 1). Finally, hydrogenation and benzoylation of 21 gave
the protected disaccharide 22 (85% over two steps). The
configuration of the newly formed glycosidic bond was
confirmed by NMR spectroscopy on 21 (J1,2ax 4.5 Hz)[16, 19]
and 22. The latter compound was also synthesized through
glucal chemistry by Danishefsky and co-workers.[16]
intermediate derived from l-lactic acid. The described
chemistry also provides a plausible scenario for the incorpo-
ration of the carbohydrate domain of vancomycin into its
parent compound.[20]
Received: February 4, 1998 [Z11435IE]
German version: Angew. Chem. 1998, 110, 1972 ± 1974
Keywords: evernitrose ´ glycosides ´ glycosylations ´ van-
comycin ´ vancosamine
[1] a) M. H. McCormick, W. M. Stark, G. F. Pittenger, R. C. Pittenger,
G. M. McGuire, Antibiot. Annu. 1956, 1955 ± 1956, 606 ± 611; b) D. H.
Williams, V. Rajananda, M. P. Williamson, G. Bojesen in Topics in
Antibiotic Chemistry, Vol. 5 (Ed.: P. G. Sammes), Ellis Horwood,
Chichester, 1980, pp. 119 ± 158.
[2] A. K. Ganguly, B. Pramanih, T. M. Chan, O. Sarre, Y.-T. Liu, J.
Morton, V. M. Girijavallabhan, Heterocycles 1989, 28, 83 ± 88.
[3] K. C. Nicolaou, R. M. Rodríguez, H. J. Mitchell, F. L. van Delft,
Angew. Chem. 1998, 110, 1975 ± 1977; Angew. Chem. Int. Ed. 1998, 37,
1874 ± 1876.
In summary, we have synthesized vancosamine derivative
15 (11 steps from 3, ca. 25% overall yield) and evernitrose (10,
9 steps from 3, ca. 30% overall yield) from a common chiral
Table 1. Selected physical properties of compounds 10, 15, and 21.
[4] a) T. T. Thang, F. Winternitz, J. Chem. Soc. Chem. Commun. 1979,
153 ± 154; b) I. Dyong, H. Friege, Chem. Ber. 1979, 112, 3273 ± 3281;
c) T. T. Thang, F. Winternitz, Tetrahedron Lett. 1980, 21, 4495 ± 4498;
d) H. I. Ahmad, J. S. Brimacombe, A. S. Mengech, L. C. N. Tucker,
Carbohydr. Res. 1981, 93, 288 ± 293; e) I. Dyong, H. Friege, H.
Luftmann, H. Merten, Chem. Ber. 1981, 114, 2669 ± 2680; f) G. Fronza,
C. Fuganti, P. Grasselli, G. Pedrocchi-Fantoni, Tetrahedron Lett. 1981,
22, 5073 ± 5076; g) J. S. Brimacombe, A. S. Mengech, K. M. M. Rah-
man, L. C. N. Tucker, Carbohydr. Res. 1982, 110, 207 ± 215; h) G.
Fronza, C. Fuganti, P. Grasselli, G. Pedrocchi-Fantoni, J. Carbohydr.
Chem. 1983, 2, 225 ± 248; i) Y. Hamada, A. Kawai, T. Shioiri,
Tetrahedron Lett. 1984, 25, 5413 ± 5414; j) F. M. Hauser, S. R.
Ellenberger, J. Org. Chem. 1986, 51, 50 ± 57; k) I. Dyong, J. Weigand,
J. Thiem, Liebigs Ann. Chem. 1986, 577 ± 599; l) A. Klemer, H.
Wilbers, Liebigs Ann. Chem. 1987, 815 ± 823; m) Y. Hamada, A.
Kawai, T. Matsui, O. Hara, T. Shioiri, Tetrahedron 1990, 46, 4823 ±
4846; n) R. Greven, P. Jütten, H.-D. Scharf, Carbohydr. Res. 1995, 275,
83 ± 93.
[5] a) J. Yoshimura, M. Matsuzawa, K. Sato, M. Funabashi, Chem. Lett.
1977, 1403 ± 1406; b) J. Yoshimura, M. Matsuzawa, M. Funabashi, Bull.
Chem. Soc. Jpn. 1978, 51, 2064 ± 2067; c) J. S. Brimacombe, A. S.
Mengech, M. S. Saeed, Carbohydr. Res. 1979, 75, C5 ± C7; d) J.
Yoshimura, M. Matsuzawa, K. Sato, Y. Nagasawa, Carbohydr. Res.
1979, 76, 67 ± 78; e) J. S. Brimacombe, A. S. Mengech, J. Chem. Soc.
Perkin Trans. 1 1980, 2054 ± 2060; f) J. S. Brimacombe, M. S. Saeed,
T. J. R. Weakley, J. Chem. Soc. Perkin Trans. 1 1980, 2061 ± 2064; g) P.
Jütten, H.-D. Scharf, Carbohydr. Res. 1991, 212, 93 ± 108.
10: Rf 0.25 (silica gel, 70% Et2O in hexanes); [a]D22
31.5 (c 1.0 in
CHCl3); IR (thin film): nÄmax 3381, 2987, 2942, 2842, 1548, 1455, 1393, 1354,
1
1285, 1183, 1155, 1102, 1046, 988, 942, 913, 876, 857 cm
;
1H NMR
(500 MHz, CDCl3): d 5.32 (bd, J 4.0 Hz, 1H, a-H1), 4.88 (dd, J 8.0,
4.0 Hz, 1H, b-H1), 3.91 (dq, J 10.0, 6.0 Hz, 1H, a-H5), 3.84 (bs, 1H, OH),
3.76 (d, J 10.0 Hz, 1H , a-H4), 3.74 (d, J 10.0 Hz, 1H, b-H4), 3.46 (dq,
J 10.0, 6.0 Hz, 1H, b-H5), 3.41 (s, 3H, a-OCH3), 3.39 (s, 3H, b-OCH3),
3.15, (bs, 1H, OH), 2.41 (dd, J 13.5, 4.5 Hz, 1H, a-H2eq), 2.23 (m, 2H, b-
H2eq,ax), 2.17 (dd, J 13.5, 1.5 Hz, 1H, a-H2ax), 1.81 (s, 3H, a-H3), 1.66 (s,
3H, b-H3), 1.36 (d, J 6.5 Hz, 3H, a-H6), 1.31 (d, J 6.0 Hz, 3H, b-H3);
13C NMR (125 MHz, CDCl3) d 92.4, 90.6, 90.1, 89.6, 84.5, 84.2, 71.2, 66.1,
66.0, 66.0, 60.8, 60.8, 44.2, 40.8, 18.5, 18.4, 18.3, 16.6; HR-MS (FAB) calcd
for C8H15O5NNa [M Na ]: 228.0848, found: 228.0848.
15: Rf 0.12 (silica gel, 60% Et2O in hexanes); [a]D22
56.8 (c 0.5 in
CHCl3); IR (thin film): nÄmax 3410, 3064, 3032, 2930, 1713, 1517, 1453, 1380,
1350, 1280, 1240, 1208, 1160, 1068, 962, 885, 821, 753, 699, 585, 552,
486 cm 1; 1H NMR (500 MHz, CDCl3, mixture of anomers, ca. 1.8:1): d
7.32 ± 7.27 (m, 10H, ArH), 5.34 (bs, 0.4H, a-H1), 5.03 and 4.99 (AB, J
12.5 Hz, 2H, CH2Ar), 4.92 (bs, 1H, NH), 4.87 (m, 2.5H, b-H1, NH,
CH2Ar), 4.64 and 4.54 (AB, J 11.0 Hz, 0.8H, CH2Ar), 4.62 and 4.50 (AB,
J 11.0 Hz, 1.2H, CH2Ar), 4.29 (bq, J 6.5 Hz, 0.4H, a-H5), 3.82 (bq, J
6.5 Hz, 0.6H, b-H5), 3.56 (bs, 0.4H, a-H4), 3.52 (bs, 0.6H, b-H4), 3.15 (d,
J 8.0 Hz, 0.6H, b-OH), 2.61 (dd, J 8.0, 1.5 Hz, 0.4H, b-H2ax), 1.96 (dd,
J 13.0, 4.5 Hz, 0.6H, a-H2eq), 1.81 (bd, J 11.0 Hz, 0.4H, b-H2ax), 1.78
(bd, J 13.5 Hz, 0.6H, a-H2ax); 1.73 (s, 1.2H, a-H3), 1.55 (s, 1.8H, b-H3),
1.30 (d, J 6.5 Hz, 0.8H, a-H6), 1.30 (d, J 6.5 Hz, 1.2H, b-H6); 13C NMR
(125 MHz, CDCl3): d 154.8, 154.8, 137.9, 136.6, 136.4, 128.5, 128.4, 128.2,
128.2, 128.1, 128.1, 127.8, 92.7, 91.4, 80.1, 78.8, 75.8, 75.6, 70.1, 66.3, 66.2,
64.8, 55.3, 53.6, 40.5, 36.3, 29.7, 24.0, 22.0, 17.7, 17.5; HR-MS (FAB) calcd
[6] a) K. C. Nicolaou, C. N. C. Boddy, S. Natarajan, T. Y. Yue, H. Li, S.
Bräse, J. M. Ramanjulu, J. Am. Chem. Soc. 1997, 119, 3421 ± 3422;
b) K. C. Nicolaou, X. J. Chu, J. M. Ramanjulu, S. Natarajan, S. Bräse,
F. Rübsam, C. N. C. Boddy, Angew. Chem. 1997, 109, 1518 ± 1519;
Angew. Chem. Int. Ed. Engl. 1997, 36, 1539 ± 1540; c) K. C. Nicolaou,
J. M. Ramanjulu, S. Natarajan, S. Bräse, H. Li, C. N. C. Boddy, F.
Rübsam, Chem. Commun. 1997, 1899 ± 1900.
for C22H27O5NNa [M Na ]: 408.1787, found: 408.1780.
21: Rf 0.18 (silica gel, 50% Et2O in hexanes); [a]D22
43.8 (c 0.24 in
CHCl3); IR (thin film): nÄmax 3409, 3031, 2931, 1723, 1599, 1497, 1478, 1455,
1
1363, 1297, 1256, 1215, 1111, 1062, 735, 699 cm
;
1H NMR (500 MHz,
[7] K. C. Nicolaou, F. L. van Delft, S. C. Conley, H. J. Mitchell, J. Jin,
R. M. Rodríguez, J. Am. Chem. Soc. 1997, 119, 9057 ± 9058.
CDCl3): d 7.31 ± 7.18 (m, 25H, ArH), 7.02 (t, J 8.5 Hz, 2H, phenol-H),
6.57 (d, J 8.5 Hz, 2H, phenol-H), 5.32 (bd, J 4.5 Hz, 1H, H1'), 5.08 (d,
J 7.5 Hz, 1H, H1), 4.98 (AB, J 11.0 Hz, 2H, CH2Ar), 4.90 (s, 1H, NH),
4.83 (AB, J 11.0 Hz, 2H, CH2Ar), 4.68 (AB, J 11.0 Hz, 2H, CH2Ar),
4.55 (AB, J 11.5 Hz, 2H, CH2Ar), 4.50 (m, 1H, H5'), 4.45 (AB, J
12.0 Hz, 2H, CH2Ar), 3.94 (t, J 8.0 Hz, 1H, H3), 3.77 (s, 6H, OCH3),
3.72 ± 3.65 (m, 3H, H2, H4, H6a), 3.61 (dd, J 12.0, 5.5 Hz, 1H, H6b), 3.41
(s, 1H, H4'), 3.37 (m, 1H, H5), 1.84 (s, 3H, H3'), 1.83 (d, J 13.0 Hz, 1H,
H2'eq), 1.78 (dd, J 13.0, 4.5 Hz, 1H, H2'ax), 1.09 (d, J 6.5 Hz, 3H, H6');
13C NMR (125 MHz, CDCl3): d 154.9, 153.9, 138.6, 138.4, 138.1, 136.6,
134.0, 130.0, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.5, 127.4, 124.0,
105.5, 100.7, 97.7, 86.0, 80.9, 78.2, 75.8, 75.8, 75.7, 75.3, 74.7, 73.6, 68.8, 66.0,
64.3, 56.1, 53.7, 36.6, 29.7, 23.4, 17.4; HRMS (FAB) calcd for C57H63O12NCs
Ã
[8] M. Hirama, I. Nishizaki, T. Shigemoto, S. Ito, J. Chem. Soc. Chem.
Commun. 1986, 393 ± 394.
Â
[9] J. A. Marco, M. Cards, J. Murga, F. Gonzalez, E. Falomir, Tetrahedron
Lett. 1997, 38, 1841 ± 1844.
[10] a) J. E. Baldwin, G. A. Höfle, O. W. Lever, Jr., J. Am. Chem. Soc. 1974,
96, 7125 ± 7127; b) R. K. Boeckman, Jr., K. J. Bruza, J. Org. Chem.
1979, 44, 4781 ± 4788.
[11] The minor Z isomer of 6 was unreactive under these conditions,
whereas prolonged reaction time or higher temperatures led to
desilylation. Regeneration of the E isomer was effected by equilibra-
tion of the Z-oxime (tBuOOH, CCl4, 778C, 70% yield, ca. 4:1): N. B.
Barhate, A. S. Gajare, R. D. Wakharkar, A. Sudalai, Tetrahedron Lett.
1997, 38, 653 ± 656.
[M Cs ]: 1086.3405, found: 1086.3450.
Angew. Chem. Int. Ed. 1998, 37, No. 13/14
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3713-1873 $ 17.50+.50/0
1873