10.1002/cctc.201701092
ChemCatChem
COMMUNICATION
Finally, to demonstrate the applicability of our second-generation
system, the hydrogen-borrowing cascade with TeSADH
W110A/G198D was performed on semi-preparative scale (100
mg). Substrates rac-1a and rac-4a were chosen owing to the
potential use of the amine products as synthetic intermediates
for (R,R)-dilevalol and (R,R)-formoterol respectively. The
asymmetric amination of rac-1a and rac-4a was achieved with
isolated yields of 69 and 84% respectively.
[10]
[11]
F.-F. Chen, Y.-Y. Liu, G.-W. Zheng, J.-H. Xu, ChemCatChem 2015,
7, 3838–3841.
C. C. Gruber, B. M. Nestl, J. Gross, P. Hildebrandt, U. T.
Bornscheuer, K. Faber, W. Kroutil, Chem. - A Eur. J. 2007, 13,
8271–6.
[12]
[13]
M. E. Tanner, Acc. Chem. Res. 2002, 35, 237–246.
P. Hildebrandt, T. Riermeier, J. Altenbuchner, U. T. Bornscheuer,
Tetrahedron: Asymmetry 2001, 12, 1207–1210.
P. Hildebrandt, A. Musidlowska, U. Bornscheuer, J. Altenbuchner,
Appl. Microbiol. Biotechnol. 2002, 59, 483–487.
J. M. Patel, M. M. Musa, L. Rodriguez, D. A. Sutton, V. V Popik, R.
S. Phillips, Org. Biomol. Chem. 2014, 12, 5905–10.
M. M. Musa, N. Lott, M. Laivenieks, L. Watanabe, C. Vieille, R. S.
Phillips, ChemCatChem 2009, 1, 89–93.
[14]
[15]
[16]
[17]
[18]
[19]
[20]
In summary, using a non-selective NADPH-dependent ADH
(TeSADH) as a template, we have successfully applied semi-
rational redesign, based on natural sequence diversity, to
engineer this ADH to accept NADH as cofactor with a 10,000-
fold switch in selectivity. The availability of this NADH-dependent
ADH has subsequently allowed us to develop a second
generation hydrogen-borrowing system for enantioselective
amination of alcohols that combines the broad substrate scope
of the first iteration with the benefits of a single, highly stable,
non-selective ADH.
M. M. Musa, J. M. Patel, C. M. Nealon, C. Sup, R. S. Phillips, I.
Karume, J. Mol. Catal. B Enzym. 2015, 115, 155–159.
A. Andreadeli, D. Platis, V. Tishkov, V. Popov, N. E. Labrou, FEBS J.
2008, 275, 3859–3869.
M. Nishiyama, J. J. Birktoft, T. Beppu, J. Biol. Chem. 1993, 268,
4656–4660.
Acknowledgements
A. Rodríguez-Arnedo, M. Camacho, F. Llorca, M. J. Bonete, Protein
J. 2005, 24, 259–266.
We thank the industrial affiliates of the Centre of Excellence for
Biocatalysis, Biotransformations and Biomanufacture (CoEBio3)
for awarding studentships to M.P.T. N.J.T. also acknowledges
the Royal Society for a Wolfson Research Merit Award.
[21]
[22]
[23]
N. S. Scrutton, A. Berry, R. N. Perham, Nature 1990, 343, 38–43.
M. J. Rane, K. C. Calvo, Arch Biochem Biophys 1997, 338, 83–89.
A. Pick, W. Ott, T. Howe, J. Schmid, V. Sieber, J. Biotechnol. 2014,
189, 157–165.
[24]
[25]
R. Chen, A. Greer, A. M. Dean, Proc. Natl. Acad. Sci. U. S. A. 1995,
92, 11666–11670.
Keywords: biocatalysis
• enzyme cascades • hydrogen
borrowing • protein engineering
J. K. B. Cahn, C. A. Werlang, A. Baumschlager, S. Brinkmann-Chen,
S. L. Mayo, F. H. Arnold, ACS Synth. Biol. 2016, DOI
10.1021/acssynbio.6b00188.
[1]
[2]
D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L.
Leazer, Jr., R. J. Linderman, K. Lorenz, J. Manley, B. Pearlman, A.
Wells, et al., Green Chem. 2007, 9, 411–420.
[26]
[27]
[28]
E. Goihberg, M. Peretz, S. Tel-Or, O. Dym, L. Shimon, F. Frolow, Y.
Burstein, Biochemistry 2010, 49, 1943–1953.
J. Leonard, A. J. Blacker, S. P. Marsden, M. F. Jones, K. R.
Mulholland, R. Newton, Org. Process Res. Dev. 2015, 19, 1400–
1410.
C. M. Nealon, M. M. Musa, J. M. Patel, R. S. Phillips, ACS Catal.
2015, 5, 2100–2114.
M. M. Musa, R. S. Phillips, M. Laivenieks, C. Vieille, M. Takahashi,
S. M. Hamdan, M. Takahashie, S. M. Hamdan, Org. Biomol. Chem.
2013, 11, 2911–5.
[3]
[4]
S. Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller,
ChemCatChem 2011, 3, 1853–1864.
K. Tauber, M. Fuchs, J. H. Sattler, J. Pitzer, D. Pressnitz, D.
Koszelewski, K. Faber, J. Pfeffer, T. Haas, W. Kroutil, Eur. J. Chem.
2013, 19, 4030–5.
[29]
[30]
[31]
[32]
O. Bsharat, M. M. Musa, C. Vieille, S. Oladepo, M. Takahashi, S. M.
Hamdan, ChemCatChem 2017, DOI 10.1002/cctc.201601618.
D. J. Maddock, W. M. Patrick, M. L. Gerth, Protein Eng. Des. Sel.
2015, 28, 251–258.
[5]
[6]
[7]
[8]
[9]
J. H. Sattler, M. Fuchs, K. Tauber, F. G. Mutti, K. Faber, J. Pfeffer, T.
Haas, W. Kroutil, Angew. Chemie Int. Ed. 2012, 51, 9156–9.
A. Lerchner, S. Achatz, C. Rausch, T. Haas, A. Skerra,
ChemCatChem, 2013, 5, 3374–3383.
J. K. B. Cahn, A. Baumschlager, S. Brinkmann-Chen, F. H. Arnold,
Protein Eng. Des. Sel. 2015, 29, 31–38.
R. M. Myers, D. C. Montgomery, C. M. Anderson-Cook, Response
Surface Methodology: Process and Product Optimization Using
Designed Experiments, 4th Edition, Wiley-VCH Verlag GmbH & Co.
KGaA, 2016.
L. Martínez-Montero, V. Gotor, V. Gotor-Fernández, I. Lavandera,
Green Chem. 2017, 19, 474–480.
F. G. Mutti, T. Knaus, N. S. Scrutton, M. Breuer, N. J. Turner,
Science 2015, 349, 1525–1529.
J. Wang, M. T. Reetz, Nat. Chem. 2015, 7, 948–949.
This article is protected by copyright. All rights reserved.