Communications
the entire chiral tetracyclic framework was created in one step
by a Pauson–Khand reaction. Thus, the synthesis was efficient
in terms of atom economy.
Received: December 19, 2003 [Z53583]
Keywords: alkaloids· cyclization · enynes· Pauson–Khand
.
reaction · pyrrolidines
[1] For reviews, see: a) J. Christoffers, A. Mann, Angew. Chem.
2001, 113, 4725; Angew. Chem. Int. Ed. 2001, 40, 4591; b) E. J.
Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 402; Angew.
Chem. Int. Ed. 1998, 37, 388; c) K. Fuji, Chem. Rev. 1993, 93,
2037.
[2] a) L. E. Overman, J. F. Larrow, B. A. Stearns, J. M. Vance,
Angew. Chem. 2000, 112, 219; Angew. Chem. Int. Ed. 2000, 39,
213; b) Y. He, Y. Bo, J. D. Altom, E. J. Corey, J. Am. Chem. Soc.
1999, 121, 6771; c) D. C. Palmer, M. J. Strauss, Chem. Rev. 1977,
77, 1; d) N. Ulavita, A. Hori, Y. Shimizu, P. Laszlo, J. Clardy,
Tetrahedron Lett. 1988, 29, 4381; e) S. Shiotani, T. Kometani, K.
Mitsuhashi, T. Nozawa, A. Kurobe, O. Fitsukaichi, J. Med. Chem.
1976, 19, 803; f) N. Wantanabe, Y. Ohtake, S. Hashimoto, M.
Shiro, S. Ikegami, Tetrahedron Lett. 1995, 36, 1491; g) O. Jeger, V.
Prelog in The Alkaloids: Chemistry and Physiology, Vol. VII
(Ed: R. H. F. Manske), Academic Press, New York, 1960, p. 319.
[3] a) L. Velluz, G. Mathieu, G. Monine, Tetrahedron Suppl. 1966, 8,
495; b) G. Stork, S. D. Darling, I. T. Harrison, P. S. Wharton, J.
Am. Chem. Soc. 1962, 84, 2018; c) J. A. Marshall, W. S. Johnson,
J. Am. Chem. Soc. 1962, 84, 1485.
Scheme 6. Completion of the synthesis of the tetracyclic pyrrolidine
(+)-21: a) Pd/C (10%), MeOH, H2 (20 atm), 24 h, 92%; b) NaBH4,
MeOH, 08C, 1 h; c) MsCl (2 equiv), pyridine, 08C, 3 h; d) KOtBu
(10 equiv), THF, room temperature, 24 h, 79% (three steps); e) Et3SiH
(20 equiv), TFA, room temperature, 24 h, 88%; f) MCPBA (2 equiv),
CH2Cl2, 08C, 1 h; g) TFAA (2.5 equiv), À308C; then NaBH(OAc)3, 93%
(two steps); h) Pd/C (10%), H2 (1 atm), 2 h, 78%.
the olefin 18 in the presence of palladium on activated carbon
gave inseparable products in a ratio of 8:1. 1H NMR spectro-
scopic analysis revealed that the major product was the
undesired product 22 of addition to the b face. This disap-
pointing result led us to investigate other conditions for
alkene reduction. To our delight, the treatment of the olefin
18 with triethylsilane[11] in trifluoroacetic acid (TFA) as the
solvent afforded exclusively the required a adduct 19 in 88%
yield.
[4] M. E. Kopach, A. H. Fray, A. I. Meyers, J. Am. Chem. Soc. 1996,
118, 9876.
[5] B. Jiang, M. Xu, Org. Lett. 2002, 4, 4077.
[6] a) N. A. Petasis, A. Goodman, I. A. Zavialov, Tetrahedron 1997,
53, 16463; b) N. A. Petasis, A. Goodman, I. A. Zavialov, J. Am.
Chem. Soc. 1997, 119, 445.
[7] a) P. Magnus, D. P. Becker, J. Am. Chem. Soc. 1987, 109, 7495;
b) P. Magnus, L. M. Principe, M. J. Slater, J. Org. Chem. 1987, 52,
1483; c) P. Magnus, L. M. Principe, Tetrahedron Lett. 1985, 26,
4851; d) P. Magnus, C. Exon, P. Albaugh-Robertson, Tetrahedron
1985, 41, 5861.
The last challenge was to invert the configuration of the
C20 center adjacent to the nitrogen atom. It is well-
documented that the Polonovski reaction[12] is suitable for
this transformation. The oxidation of 19 with m-chloroper-
benzoic acid (MCPBA) gave the N-oxide derivative 20, which
was treated directly with trifluoroacetic anhydride (TFAA) at
À308C. Reduction with sodium triacetoxyl borohydride then
provided (+)-21 as a single isomer in 93% yield ([a]2D5 = +51
(c = 0.21, benzene)). The optical rotation of the product was
in agreement with that reported by Meyers and co-workers
for the same compound,[4] and the configuration of the
product was further confirmed by X-ray crystallographic
analysis.[13] The steric hindrance at the concave a face of the
tetracyclic molecule 20 may explain the excellent stereo-
selectivity observed.
In summary, we have described a concise and efficient
synthesis of the optically active tetracyclic pyrrolidine (+)-21
under mild conditions. We have demonstrated a highly
diastereoselective method for the construction of the compact
tetracycle in the fused pyrrolidine system, which bears a
quaternary stereocenter. The stereochemistry of the product
was affected by the substituent on the starting propargylic
amine. No protecting groups were used in the synthesis, and
[8] J. L. Gras, Tetrahedron Lett. 1978, 19, 2111.
[9] S. W. Pelletier, A. P. Venkov, J. Finer-Moore, N. V. Mody,
Tetrahedron Lett. 1980, 21, 809.
[10] X-ray crystallographic data for compound 16a: C18H21NO2, Mr =
283.36, monoclinic, space group P2(1)/n, a = 15.5826(10), b =
10.7104(7), c = 19.0881(12) , V= 3008.7(3) 3, a = 90.008, b =
109.1930(10)8, g = 90.008; T= 20.08C, Z = 8, m(MoKa) =
0.081 mmÀ1
,
reflections collected: 17600 (unique 6948),
number of data with I > 2.00s(I): 3824, parameters: 547, R1 =
0.0462, Rw = 0.0923, int = 0.0459. CCDC 230574 (16a) and
R
CCDC 230573 (21) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
[11] N. M. Loim, Z. N. Parnes, N. D. Kursanov, Synthesis 1974, 633.
[12] D. Grierson, Org. React. 1990, 39, 85.
[13] X-ray crystallographic data for compound 21: C18H25NO, Mr =
271.39, monoclinic, space group P2(1)/n, a = 6.8893(7), b =
27.701(3), c = 16.2366(16) , V= 3086.7(5) 3, a = 90.008, b =
95.013(2)8,
g = 90.008,
T= 20.08C,
Z = 8,
m(MoKa) =
0.071 mmÀ1
,
reflections collected: 18522 (unique 7106),
number of data with I > 2.00s(I): 3248, parameters: 561, R1 =
0.0553, Rw = 0.0884, Rint = 0.0908; see reference [10].
2546
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 2543 –2546