Letters
To study the effect of the cyclopent-2-enecarbonyl
Journal of Medicinal Chemistry, 2004, Vol. 47, No. 23 5607
(6) Koida, M.; Walter, R. Post-proline cleaving enzyme. Purification
of this endopeptidase by affinity chromatography. J. Biol. Chem.
1976, 251, 7593-7599.
(7) Walter, R. Partial purification and characterization of post-
proline cleaving enzyme: enzymatic inactivation of neurohypo-
physeal hormones by kidney preparations of various species.
Biochim. Biophys. Acta 1976, 422, 138-158.
(8) Wilk, S. Prolyl endopeptidase. Life Sci. 1983, 33, 2149-2157.
(9) Toide, K.; Fujiwara, T.; Iwamoto, Y.; Shinoda, M.; Okamiya, K.;
et al. Effect of a novel prolyl endopeptidase inhibitor, JTP-4819,
on neuropeptide metabolism in the rat brain. Naunyn-Schmiede-
berg’s Arch. Pharmacol. 1996, 353, 355-362.
(10) Yoshimoto, T.; Kado, K.; Matsubara, F.; Koriyama, N.; Kaneto,
H.; et al. Specific inhibitors for prolyl endopeptidase and their
anti-amnesic effect. J. Pharmacobiodyn. 1987, 10, 730-735.
(11) Schneider, J. S.; Giardiniere, M.; Morain, P. Effects of the prolyl
endopeptidase inhibitor S 17092 on cognitive deficits in chronic
low dose MPTP-treated monkeys. Neuropsychopharmacology
2002, 26, 176-182.
(12) Jiang, C. H.; Tsien, J. Z.; Schultz, P. G.; Hu, Y. The effects of
aging on gene expression in the hypothalamus and cortex of
mice. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 1930-1934.
(13) Rampon, C.; Jiang, C. H.; Dong, H.; Tang, Y. P.; Lockhart, D.
J.; et al. Effects of environmental enrichment on gene expression
in the brain. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12880-
12884.
(14) Grellier, P.; Vendeville, S.; Joyeau, R.; Bastos, I. M.; Drobecq,
H.; et al. Trypanosoma cruzi prolyl oligopeptidase Tc80 is
involved in nonphagocytic mammalian cell invasion by trypo-
mastigotes. J. Biol. Chem. 2001, 276, 47078-47086.
(15) Bal, G.; Van der Veken, P.; Antonov, D.; Lambeir, A. M.; Grellier,
P.; et al. Prolylisoxazoles: potent inhibitors of prolyloligopepti-
dase with antitrypanosomal activity. Bioorg. Med. Chem. Lett.
2003, 13, 2875-2878.
(16) Vendeville, S.; Goossens, F.; Debreu-Fontaine, M. A.; Landry,
V.; Davioud-Charvet, E.; et al. Comparison of the inhibition of
human and Trypanosoma cruzi prolyl endopeptidases. Bioorg.
Med. Chem. 2002, 10, 1719-1729.
(17) Tsuru, D.; Yoshimoto, T.; Koriyama, N.; Furukawa, S. Thiazo-
lidine derivatives as potent inhibitors specific for prolyl endopep-
tidase. J. Biochem. (Tokyo) 1988, 104, 580-586.
moiety on the lipophilicity, the log P values were
determined for a selection of compounds (Table 1). The
replacement of the prolyl moiety by the cyclopent-2-
enecarbonyl moiety changed the urea group of JTP-4819
to the amide group of 5a. This change increased the
log P value by 0.4 units. The change of the amide group
of 6 to the ketone group of 7a increased the log P value
by 0.8 units. On the basis of these results, it seems that
the replacement of a proline with a cyclopent-2-enecar-
bonyl group increases the log P value but the magnitude
depends on the substituents.
The replacement of the L-prolyl residue by the cyclo-
pent-2-enecarbonyl group introduced an R,â-unsatur-
ated ketone or amide to the novel compounds. The R,â-
unsaturated ketones gave valuable information about
the structure-activity relationships, but their stability
needs further evaluation because of the activated double
bond. However, the R,â-unsaturated amides are not as
reactive because of the electron-donating effect of the
nitrogen atom.
The L-prolyl moiety was replaced by the cyclopent-2-
enecarbonyl structure at the P2 position of prolyl
oligopeptidase inhibitors. In all cases, the cyclopent-2-
enecarbonyl analogue proved to be equipotent to the
reference compound. Furthermore, this replacement
increased the lipophilicity of the compounds. This study
shows that a cyclopent-2-enecarbonyl structure can be
used to replace a prolyl residue at the P2 position of
POP inhibitors.
(18) Barelli, H.; Petit, A.; Hirsch, E.; Wilk, S.; De Nanteuil, G.; et al.
S 17092-1, a highly potent, specific and cell permeant inhibitor
of human proline endopeptidase. Biochem. Biophys. Res. Com-
mun. 1999, 257, 657-661.
Acknowledgment. We thank Mrs. Tiina Koivunen,
Mrs. Jaana Leskinen, and Mrs. Pa¨ivi Sutinen for their
excellent technical assistance and Dr. Seppo Auriola for
performing the ESI-MS analyses. We also thank Profes-
sor Antti Poso for discussions on the 3D structure of
the POP enzyme and Professor Jouko Vepsa¨la¨inen for
his valuable remarks on the manuscript. We also
acknowledge National Technology Agency in Finland,
Orion Pharma Oy, Finnish Cultural Foundationof North-
ern Savo, and the Academy of Finland for financial
support.
(19) De Nanteuil, G. U.S. Patent 5506237, 1996.
(20) Walle´n, E. A.; Christiaans, J. A.; Saarinen, T. J.; Jarho, E. M.;
Forsberg, M. M.; et al. Conformationally rigid N-acyl-5-alkyl-L-
prolyl-pyrrolidines as prolyl oligopeptidase inhibitors. Bioorg.
Med. Chem. 2003, 11, 3611-3619.
(21) Ohno, H. European Patent 0268190, 1988.
(22) Faraci, S. World Patent 9118891, 1991.
(23) No¨teberg, D.; Brånalt, J.; Kvarnstro¨m, I.; Linschoten, M.; Musil,
D.; et al. New proline mimetics: synthesis of thrombin inhibitors
incorporating cyclopentane- and cyclopentenedicarboxylic acid
templates in the P2 position. Binding conformation investigated
by X-ray crystallography. J. Med. Chem. 2000, 43, 1705-1713.
(24) Stevens, H. C.; Rinehart, J. K.; Lavanish, J. M.; Trenta, G. M.
The hydrolysis of 7,7-dichlorobicyclo[3.2.0]hept-2-en-6-one. J.
Org. Chem. 1971, 36, 2780-2784.
(25) Arai, H.; Nishioka, H.; Niwa, S.; Yamanaka, T.; Tanaka, Y.; et
al. Synthesis of prolyl endopeptidase inhibitors and evaluation
of their structure-activity relationships: in vitro inhibition of
prolyl endopeptidase from canine brain. Chem. Pharm. Bull.
(Tokyo) 1993, 41, 1583-1588.
Supporting Information Available: Experimental de-
tails and analytical data. This material is available free of
Note Added after ASAP Posting. This manuscript
was released ASAP on 10/1/2004 with an author missing
from the byline. The correct version was posted on
10/11/2004.
(26) Saito, M.; Hashimoto, M.; Kawaguchi, N.; Shibata, H.; Fukami,
H.; et al. Synthesis and inhibitory activity of acyl-peptidyl-
pyrrolidine derivatives toward post-proline cleaving enzyme; a
study of subsite specificity. J. Enzyme Inhib. 1991, 5, 51-75.
(27) Houssin, R.; Bernier, J.-L.; He´nichart, J.-P. A convenient and
general method for the preparation of tert-butoxycarbonylami-
noalkanenitriles and their conversion to mono-tert-butoxycar-
bonylalkanediamines. Synthesis 1988, 259-261.
References
(1) Brandts, J. F.; Halvorson, H. R.; Brennan, M. Consideration of
the possibility that the slow step in protein denaturation
reactions is due to cis-trans isomerism of proline residues.
Biochemistry 1975, 14, 4953-4963.
(28) Kobayashi, K. U.S. Patent 5536737, 1996.
(2) Vanhoof, G.; Goossens, F.; De Meester, I.; Hendriks, D.; Scharpe,
S. Proline motifs in peptides and their biological processing.
FASEB J. 1995, 9, 736-744.
(29) Portevin, B.; Benoist, A.; Remond, G.; Herve, Y.; Vincent, M.; et
al. New prolyl endopeptidase inhibitors: in vitro and in vivo
activities of azabicyclo[2.2.2]octane, azabicyclo[2.2.1]heptane,
and perhydroindole derivatives. J. Med. Chem. 1996, 39, 2379-
2391.
(3) Yaron, A.; Naider, F. Proline-dependent structural and biological
properties of peptides and proteins. Crit. Rev. Biochem. Mol. Biol.
1993, 28, 31-81.
(30) Yoshimoto, T.; Tsuru, D.; Yamamoto, N.; Ikezawa, R.; Furukawa,
S. Structure activity relationship of inhibitors specific for prolyl
endopeptidase. Agric. Biol. Chem. 1991, 55, 37-43.
(4) Leung, D.; Abbenante, G.; Fairlie, D. P. Protease inhibitors:
current status and future prospects. J. Med. Chem. 2000, 43,
305-341.
(5) De Nanteuil, G.; Portevin, B.; Lepagnol, J. Prolyl endopeptidase
inhibitors: a new class of memory enhancing drugs. Drugs
Future 1998, 23, 167-179.
JM049503W