M. Pohmakotr et al. / Tetrahedron Letters 45 (2004) 4315–4318
4317
References and notes
1. LiOH (5eq)
THF / H2O
reflux, 42 h
O
OH
0
Ar
HO
Ar
Ac2O
oC , 10 min
1. Ayres, D. C.; Loike, J. D. Lignans: Chemical, Biological
and Clinical Properties; Cambridge University Press:
Cambridge, 1990; Ward, R. S. Nat. Prod. Rep. 1999, 16,
75–96.
2. For examples, see: (a) Csa’ky, A. G.; Plumet, J. Chem.
Soc. Rev. 2001, 30, 313–320; (b) Sibi, M. P.; Liu, P.; Ji, J.;
Hajra, S.; Chen, J. J. Org. Chem. 2002, 67, 1738–1745; (c)
Sibi, M. P.; Hasegawa, H. Org. Lett. 2002, 4, 3347–3349;
(d) Langer, T.; Illich, M.; Helmchen, G. Synlett 1996,
1137–1139; (e) Beckett, R. P.; Crimmin, M. J.; Davis, M.
H.; Spavold, Z. Synlett 1993, 137–138.
4a-c
O
O
O
O
2. 2 M HCl
6
5a (89%)
5b (90%)
5c (87%)
1. NaBH4 / THF
0-5 oC , 1 h
2. 1 M, HCl
3. (a) Pohmakotr, M.; Sampaongoen, L.; Issaree, A.; Tuc-
hinda, P.; Reutrakul, V. Tetrahedron Lett. 2003, 44, 6717–
6720;; (b) Pohmakotr, M.; Issaree, A.; Sampaongoen, L.;
Tuchinda, P.; Reutrakul, V. Tetrahedron Lett. 2003, 44,
7937–7940.
4. Syntheses based on vicinal anion of ())-dimenthyl succi-
nate, see: (a) Lee, E.; Choi, S.-J.; Kim, H.; Han, H.-O.;
Kim, Y.-K.; Min, S.-I.; Son, S.-H.; Lim, S.-M.; Jang,
W.-S. Angew. Chem., Int. Ed. 2002, 41, 176–179; (b)
Kende, A. S.; Fujii, Y.; Mendoza, J. S. J. Am. Chem. Soc.
1990, 112, 9645–9646; (c) Misumi, A.; Iwanaga, K.;
Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1985,
107, 3343–3345.
Ar
Ar
O
O
O
O
7a (43%)
7b (44%)
7c (44%)
8a (26%)
8b (25%)
8c (27%)
Scheme 2.
5. (a) Bolm, C.; Palazzi, C.; Francio, G.; Leitner, W. Chem.
Commun. 2002, 1588–1589; (b) Doyle, M. P.; Hu, W.;
Valenzuela, M. V. J. Org. Chem. 2002, 67, 2954–2959, and
references cited therein; (c) Caro, Y.; Masaguer, C. F.;
Ravina, E. Tetrahedron: Asymmetry 2001, 12, 1723–1726;
(d) Takekawa, Y.; Shishido, K. J. Org. Chem. 2001, 66,
8490–8503; (e) Kamlage, S.; Sefkow, M.; Zimmermann, N.;
Peter, M. G. Synlett 2002, 77–80; (f) Kamlage, S.; Sefkow,
M.; Pool-Zobel, B. L.; Peter, M. G. Chem. Commun. 2001,
331–332; (g) Sibi, M. P.; Liu, P.; Johnson, M. D. Can. J.
Chem. 2000, 78, 133–138; (h) Chenevert, R.; Mohammadi-
Ziarani, G.; Caron, D.; Dasser, M. Can. J. Chem. 1999, 77,
223–226; (i) Brinksma, J.; Deen, H. V. D.; Oeveren, A. V.;
Feringa, B. L. J. Chem. Soc., Perkin Trans. 1 1998, 4159–
4163; (j) Charlton, J. L.; Chee, G. Can. J. Chem. 1997, 75,
1076–1083; (k) Gagnon, R.; Gagnon, G.; Groussain, E.;
Pedragosa-Moreau, S.; Richardson, P. F.; Roberts, S. M.;
Willetts, A. J.; Alphand, V.; Letreton, J.; Furstoss, R. J.
Chem. Soc., Perkin Trans. 1 1995, 2527–2528; (l) Lemoult, S.
C.; Richardson, P. F.; Roberts, S. M. J. Chem. Soc., Perkin
Trans. 1 1995, 89–91; (m) Itoh, T.; Chika, J.; Takagi, Y.;
Nishiyama, S. J. Org. Chem. 1993, 58, 5717–5723; (n)
Morimoto, T.; Chiba, M.; Achiwa, K. Tetrahedron 1993, 49,
1793–1806; (o) Koch, S. S. C.; Chamberlin, A. R. J. Org.
Chem. 1993, 58, 2725–2737; (p) Filho, H. C. A.; Filho, U. F.
L.; Pinheiro, S.; Vasconcellos, M. L. A. A.; Costa, P. R. R.
Tetrahedron: Asymmetry 1994, 5, 1219–1220; (q) Takano,
S.; Ohashi, K.; Sugihara, T.; Ogasawara, K. Chem. Lett.
1991, 203–206; (r) Morimoto, T.; Chiba, M.; Achiwa, K.
Tetrahedron Lett. 1990, 31, 261–264; (s) Morimoto, T.;
Chiba, M.; Achiwa, K. Heterocycles 1990, 30, 363–366; (t)
Shao, L.; Miyata, S.; Muramatsu, H.; Kawano, H.; Ishii, Y.;
Saburi, M.; Uchida, Y. J. Chem. Soc., Perkin Trans. 1 1990,
1441–1445; (u) Yoda, H.; Kitayama, H.; Katagiri, T.;
Takabe, K. Tetrahedron 1990, 48, 3313–3322.
formation–reduction sequence, starting from chiral
succinic acid derivatives 4 (Scheme 2).
Thus, hydrolyses of 4a–c employing LiOH (5 equiv) in
aqueous THF under reflux for 40–42 h provided the
corresponding succinic acid derivatives 5a–c in good
yields after acidic work-up.11 Treatment of these acids
with excess Ac2O at 0 ꢁC afforded the corresponding acid
anhydrides 6 in quantitative yields. Reduction of 6 with
NaBH4 in THF at 0–5 ꢁC for 1 h afforded the mixtures of
the expected (R)-b-arylmethyl-c-butyrolactones 712 and
(R)-a-arylmethyl-c-butyrolactones 8,12 which could be
separated by chromatography on silica gel.
In conclusion, we have described a general entry to an
enantioselective synthesis of (R)-b-arylmethyl-c-butyrolac-
tones. The method involves highly regio- and diastereo-
selective arylmethylations of the vicinal dianions derived
from chiral succinic acid derivatives, 1,4-bis[(4R,5S)-3,4-
dimethyl-2-oxo-5-phenylimidazolidin-1-yl]butane-1,4-di-
one and 1,4-bis[(4S,5R)-3,4-dimethyl-2-oxo-5-phenyl-
imi-dazolidin-1-yl]butane-1,4-dione. It is anticipated
that the methodology described herein will find a number
of useful applications in asymmetric synthesis of lignans.
Acknowledgements
We thank the Thailand Research Fund for financial
support (BRG/22/2544) to M.P. and the award of a
Senior Research Scholar to V.R. D.S. thanks the
Development and Promotion of Science and Technology
Talent Project (DPST) for a scholarship. Thanks are also
made to the Higher Education Development Project:
Postgraduate Education and Research Program in
Chemistry (PERCH) for support. We are grateful to
Professor Paul Knochel, LMU, Munich, Germany, for
the HRMS and CHN determination of some com-
pounds.
6. Treatment of 1a with 1 equiv of LDA, followed by
reacting with 1 or 2 equiv of benzyl bromide under the
standard conditions provided a low yield of the expected
product 3a.
7. Attempts to prove the presence of the vicinal dianion 2a
by quenching with D2O were unsuccessful. No deuterium
1
incorporation was observed as revealed by H NMR and
MS. In spite of these results, it was still assumed that the