1748
T. Barf et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1745–1748
modes for this novel class of hexahydrocyclohepta[b]indole-based
A-FABP inhibitors. Inhibitors such as 30, will further help to delin-
eate the exact role of A-FABP in fatty-acid homeostasis in adipose
tissue and macrophages.
References and notes
1. (a) Banaszak, L.; Winter, N.; Xu, Z.; Bernlohr, D. A.; Cowan, S.; Jones, T. A. Adv.
Protein Chem. 1994, 45, 89; (b) Bernlohr, D. A.; Doering, T. L.; Kelly, T. J., Jr.;
Lane, M. D. Biochem. Biophys. Res. Commun. 1985, 132, 50; (c) Zimmerman, A.
W.; Veerkamp, J. H. Cell. Mol. Life Sci. 2002, 59, 1096.
2. Furuhashi, M.; Hotamisligil, G. S. Nat. Rev. 2008, 7, 489.
3. (a) Kazuhisa, M. Diabetes Res. Clin. Pract. 2007, 77, 17; (b) Hotamisligil, G. S.
Nature 2006, 444, 860; (c) Makowski, L.; Hotamisligil, G. S. Curr. Opin. Lipidol.
2005, 16, 543.
4. (a) Hotamisligil, G. S.; Johnson, R. S.; Distel, R. J.; Ellis, R.; Papaioannou, V. E.;
Spiegelman, B. M. Science 1996, 274, 1377; (b) Uysal, K. T.; Scheja, L.;
Wiesbrock, S. M.; Bonner-Weir, S.; Hotamisligil, G. S. Endocrinology 2000, 141,
3388.
5. (a) Makowski, L.; Boord, J. B.; Maeda, K.; Babaev, V. R.; Uysal, K. T.; Morgan, M.
A.; Parker, R. A.; Suttles, J.; Fazio, S.; Hotamisligil, G. S.; Linton, F. M. Nat. Med.
2001, 7, 699; (b) Boord, J. B.; Maeda, K.; Makowski, L.; Babaev, V. R.; Fazio, S.;
Linton, F. M.; Hotamisligil, G. S. Arterscler. Thromb. Vasc. Biol. 2002, 22, 1686.
6. Furuhashi, M.; Tuncman, G.; Görgün, C. Z.; Makowski, L.; Atsumi, G.;
Vaillancourt, E.; Kono, K.; Babaev, V. R.; Fazio, S.; Linton, M. F.; Sulsky, R.;
Robl, J. A.; Parker, R. A.; Hotamisligil, G. S. Nature 2007, 447, 959.
7. Tuncman, G.; Erbay, E.; De Vivo, I.; Campos, H.; Rimm, E. B.; Hotamisligil, G. S.
PNAS 2006, 103, 6970.
Figure 4. Overlays of co-crystal structures of 26 (in yellow) and 30 (in green) in
human A-FABP (PBD codes: 3FR4 and 3FR5).
8. (a) Ringom, R.; Axen, E.; Uppenberg, J.; Lundbäck, T.; Rondahl, L.; Barf, T. Bioorg.
Med. Chem. Lett. 2004, 14, 4449; (b) Sulsky, R.; Magnin, D. R.; Huang, Y.;
Simpkins, L.; Taunk, P.; Patel, M.; Zhu, Y.; Stouch, T. R.; Bassolino-Klimas, D.;
Parker, R.; Harrity, T.; Stoffel, R.; Taylor, D. S.; Lavoie, T. B.; Kish, K.; Jacobson, B.
L.; Sheriff, S.; Adam, L. P.; Ewing, W. R.; Robl, J. A. Bioorg. Med. Chem. Lett. 2007,
17, 3511; (c) McDonnell, P. A.; Constantine, K. L.; Goldfarb, V.; Johnson, S. R.;
Sulsky, R.; Magnin, D. R.; Robl, J. A.; Caulfield, T. J.; Parker, R. A.; Taylor, D. S.;
Adam, L. P.; Metzler, W. J.; Mueller, L.; Farmer, B. T. J. Med. Chem. 2006, 49, 501.
9. Lehmann, F.; Haile, S.; Axen, E.; Medina, C.; Uppenberg, J.; Svensson, S.;
Lundbäck, T.; Rondahl, L.; Barf, T. Bioorg. Med. Chem. Lett. 2004, 14, 4445.
10. Binas, B.; Danneberg, H.; McWhir, J.; Mullins, L.; Clark, A. J. FASEB J. 1999, 13,
805.
11. Veerkamp, J. H.; Peters, R. A.; Maatman, R. Biochim. Biophys. Acta 1991, 1081, 1.
12. Lundbäck, T.; Schultz, J.; Feldwisch, J.; Uppenberg, J. Rec. Res. Devel. Chem. 2004,
2, 165.
13. Van Dongen, M. J. P.; Uppenberg, J.; Svensson, S.; Lundbäck, T.; Åkerud, T.;
Wikström, M.; Schultz, J. J. Am. Chem. Soc. 2002, 124, 11874. The fluorescence
polarization assay described herein was used with minor modifications..
14. Carboxamide derivatives 29 and 30 were prepared via the respective 2- and 3-
cyanobenzyl intermediates. Hydrolysis of the methyl ester and nitrile to the
final compounds was effected in one step with KOH in refluxing EtOH/water
(5/1 v/v).
the hydroxyl group of S53 was observed while comparing co-crys-
tal structure complexes with 30, versus 26. T53 in H-FABP is pre-
sumably unable to adjust or simply causes a steric clash, which
most likely explains the superior selectivity of 30. The relative
higher polarity of 30 resulted in a slightly reduced plasma protein
binding (99.7%) as compared to the more lipophilic congeners.
In conclusion, 2a proved to be a viable starting point of a lead
optimization program, and using a structure-based drug design ap-
proach, several improvements were effected. Expanding the right-
hand ring of the tetrahydrocarbazole to a seven-membered ring
gave improved affinity. Introduction of a CF3 group in the ortho-po-
sition (26) or a carboxamide in the meta-position (30) of the N-
benzyl substituent, gave a significant improvement leading to
nanomolar inhibitors and with different selectivity profiles against
H-FABP. This difference could in part be explained by solving the
co-crystal structures showing two distinctly different binding