Communications
Kobayashi, J. Am. Chem. Soc. 2003, 125, 3793; p) Y. Huang,
A. K. Unni, A. N. Thadani, V. H. Rawal, Nature 2003, 424, 146.
[7] For enantioselective rhodium carbene transformations catalyzed
by 2a–d, see: H. Saito, H. Oishi, S. Kitagaki, S. Nakamura, M.
Anada, S. Hashimoto, Org. Lett. 2002, 4, 3887, and references
therein.
which interacts more severely with the aldehyde substituent R
than the parent phthalimido group, also greatly favors the
formation of a complex A as demonstrated by the reaction
with the sterically less demanding phenylpropargylaldehyde.
This model also explains the preference of dirhodium(ii)
carboxamidate catalysts 3a,b over the carboxylate counter-
parts 2a–d with similar C2-symmetry-like conformations[18] in
[8] S. Kitagaki, H. Matsuda, N. Watanabe, S. Hashimoto, Synlett
1997, 1171.
[9] R. F. Lowe, R. J. Stoodley, Tetrahedron Lett. 1994, 35, 6351.
[10] Y. Motoyama, Y. Koga, H. Nishiyama, Tetrahedron 2001, 57, 853.
[11] S. Kitagaki, M. Anada, O. Kataoka, K. Matsuno, C. Umeda, N.
Watanabe, S. Hashimoto, J. Am. Chem. Soc. 1999, 121, 1417.
[12] For the preparation of 3b, see the Supporting Information.
[13] Ahigh order of asymmetric induction in HDAreactions
between monooxygenated 1,3-dienes and unactivated aldehydes
has been achieved only by using the Jacobsen tridentate Schiff
base CrIII complex as a chiral catalyst: A. G. Dossetter, T. F.
Jamison, E. N. Jacobsen, Angew. Chem. 1999, 111, 2549; Angew.
Chem. Int. Ed. 1999, 38, 2398.
[14] a) S. Yao, M. Johannsen, H. Audrain, R. G. Hazell, K. A.
Jørgensen, J. Am. Chem. Soc. 1998, 120, 8599, in which
0.05 mol% of catalyst was used in the HDAreaction with a
maximum of 98.4% ee; b) see reference [6l], in which
0.005 mol% of catalyst was used in the HDAreaction with
96.2% ee; c) Y, Motoyama, Y. Koga, K. Kobayashi, K. Aoki, H.
Nishiyama, Chem. Eur. J. 2002, 8, 2968, in which 0.0083 mol% of
catalyst was used in Michael reaction of a-cyanopropionates
with 81% ee; d) Y. Huang, T. Iwama, V. H. Rawal, J. Am. Chem.
Soc. 2002, 124, 5950, in which 0.05 mol% of catalyst in Diels –
Alder reaction with 98% ee; e) Y. Yuan, X. Zhang, K. Ding,
Angew. Chem. 2003, 115, 5636; Angew. Chem. Int. Ed. 2003, 42,
5478, where 0.01 mol% of catalyst was used in glyoxylate-ene
reaction with up to 97.9% ee.
[15] J. M. Ready, E. N. Jacobsen, Angew. Chem. 2002, 114, 1432;
Angew. Chem. Int. Ed. 2002, 41, 1374, in which 0.0004 mol% of
catalyst was used in hydrolytic kinetic resolution of terminal
epoxides with > 99% ee.
[16] CCDC 222738 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
[17] For an overview, see: E. J. Corey, T. W. Lee, Chem. Commun.
2001, 1321.
[18] a) H. Tsutsui, M. Matsuura, K. Makino, S. Nakamura, M.
Nakajima, S. Kitagaki, S. Hashimoto, Isr. J. Chem. 2001, 41, 283;
b) K. Hikichi, S. Kitagaki, M. Anada, S. Nakamura, M.
Nakajima, M. Shiro, S. Hashimoto, Heterocycles 2003, 61, 391.
À
these reactions, in which four sets of formyl C H···O hydro-
gen-bonding interactions are possible.
In conclusion, we have demonstrated that 3b is an
exceptionally effective Lewis acid catalyst for endo and
enantioselective HDAreactions of a diverse range of
aldehydes with Danishefsky-type dienes as well as with
monooxygenated dienes, in which up to 99% ee and turnover
numbers as high as 48000 have been achieved. The catalyst is
readily synthesized, air-stable, and easily handled. The
absolute stereochemical model proposed herein will provide
a useful guide for the development of other classes of Lewis
acid catalyzed enantioselective reactions.
Received: January 21, 2004 [Z53821]
Keywords: aldehydes · asymmetric catalysis · cycloaddition ·
.
heterocycles · rhodium
[1] a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds, Wiley-
Interscience, New York, 1998; b) H. M. L. Davies, R. E. J.
Beckwith, Chem. Rev. 2003, 103, 2861.
[2] F. A. Cotton, E. A. Hillard, C. A. Murillo, J. Am. Chem. Soc.
2002, 124, 5658.
[3] a) M. P. Doyle, I. M. Phillips, W. Hu, J. Am. Chem. Soc. 2001,
123, 5366; b) M. P. Doyle, J. Colyer, J. Mol. Catal. A 2003, 196,
93.
[4] a) S. J. Danishefsky, Aldrichimica Acta 1986, 19, 59; b) S. J.
Danishefsky, M. P. DeNinno, Angew. Chem. 1987, 99, 15; Angew.
Chem. Int. Ed. Engl. 1987, 26, 15; c) S. Danishefsky, Chemtracts:
Org. Chem. 1989, 2, 273.
[5] For a recent review on enantioselective HDAreactions, see:
K. A. Jørgensen in Cycloaddition Reactions in Organic Synthesis
(Eds.: S. Kobayashi, K. A. Jørgensen), Wiley-VCH, Weinheim,
2002, chap. 4.
[6] For selected examples of catalytic, enantioselective HDA
reactions between the Danishefsky diene and unactivated
aldehydes, see: a) M. Bednarski, S. Danishefsky, J. Am. Chem.
Soc. 1986, 108, 7060; b) K. Maruoka, T. Itoh, T. Shirasaka, H.
Yamamoto, J. Am. Chem. Soc. 1988, 110, 310; c) A. Togni,
Organometallics 1990, 9, 3106; d) Q. Gao, T. Maruyama, M.
Mouri, H. Yamamoto, J. Org. Chem. 1992, 57, 1951; e) E. J.
Corey, C. L. Cywin, T. D. Roper, Tetrahedron Lett. 1992, 33,
6907; f) G. E. Keck, X.-Y. Li, D. Krishnamurthy, J. Org. Chem.
1995, 60, 5998; g) T. Hanamoto, H. Furuno, Y. Sugimoto, J.
Inanaga, Synlett 1997, 79; h) A. K. Ghosh, P. Mathivanan, J.
Cappiello, Tetrahedron Lett. 1997, 38, 2427; i) S. E. Schaus, J.
Brånalt, E. N. Jacobsen, J. Org. Chem. 1998, 63, 403; j) K. B.
Simonsen, N. Svenstrup, M. Roberson, K. A. Jørgensen, Chem.
Eur. J. 2000, 6, 123; k) S. Kezuka, T. Mita, N. Ohtsuki, T. Ikeno,
T. Yamada, Bull. Chem. Soc. Jpn. 2001, 74, 1333; l) J. Long, J. Hu,
X. Shen, B. Ji, K. Ding, J. Am. Chem. Soc. 2002, 124, 10; m) K.
Aikawa, R. Irie, T. Katsuki, Tetrahedron 2001, 57, 845; n) B.
Wang, X. Feng, Y. Huang, H. Liu, X. Cui, Y. Jiang, J. Org. Chem.
2002, 67, 2175; o) Y. Yamashita, S. Saito, H. Ishitani, S.
2668
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 2665 –2668