NNSFC (20774091), Fund for one hundred talent scientist, the
‘NCET’ program, 973 program from MOST and the experi-
mental fund of NSRL.
Notes and references
1 F. I. Valiyaveetil, M. Leonetti, T. W. Muir and R. MacKinnon,
Science, 2006, 314, 1004–1007.
2 S. Liu, Q. Pu, L. Gao, C. Korzeniewski and C. Matzke, Nano Lett.,
2005, 5, 1389–1393.
3 Q. Pu, J. Yun, H. Temkin and S. Liu, Nano Lett., 2004, 4,
1099–1103.
4 L. Husaru, R. Schulze, G. Steiner, T. Wolff, W. D. Habicher and
R. Salzer, Anal. Bioanal. Chem., 2005, 382, 1882–1888.
5 M. Yoshio, T. Mukai, H. Ohno and T. Kato, J. Am. Chem. Soc.,
2004, 126, 994–995.
6 M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and
J. E. McGrath, Chem. Rev., 2004, 104, 4587–4612.
7 T. Kato, T. Yasuda, Y. Kamikawa and M. Yoshio, Chem.
Commun., 2009, 729–739.
Fig. 3 Ionic conductivities of the liquid crystal phase (to the right of
the dashed line) with different discotic molecular concentration.
(a) Parallel and (c) perpendicular to the axis of the column,
(b) un-aligned sample.
aligned columnar liquid crystals further confirm the existence
of the ionic nanochannels.
8 L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma,
Chem. Rev., 2001, 101, 4071–4098.
9 T. M. Fyles, Chem. Soc. Rev., 2007, 36, 335–347.
10 D. Pijper, M. G. M. Jongejan, A. Meetsma and B. L. Feringa,
J. Am. Chem. Soc., 2008, 130, 4541–4552.
Another unexpected structural finding is that the d spacing
keeps relatively constant in two sub-ranges of concentrations,
which indicates
a
nonlinear correlation between the
11 D. A. Tomalia, Nat. Mater., 2003, 2, 711–712.
12 J. Ruokolainen, R. Makinen, M. Torkkeli, T. Makela, R. Serimaa,
¨
¨
¨
concentration and the d spacing. This can not be explained
G. ten Brinke and O. Ikkala, Science, 1998, 280, 557–560.
13 B. Chen, X. B. Zeng, U. Baumeister, S. Diele, G. Ungar and
C. Tschierske, Angew. Chem., Int. Ed., 2004, 43, 4621–4625.
with the mean-field approaches of Debye–Huckel or Poisson–
¨
Boltzmann theory,30 though it can account for the increase in
d spacing with the decrease in concentration. Clearly an
attraction force should exist in the system, which prevents
the d spacing from continuously decreasing. Attraction
between like-charged rods has been observed in a variety of
systems especially in biological materials like actins. In the
past 30 years, a great effort has been dedicated to interpret
this phenomenon and different models are proposed, which,
however, do not reach a full agreement yet.31,32 The basic idea
of like-charged rods may explain our observation (see Part 4
and S-Fig. 8 of the ESIw). Nevertheless, as the discotic
molecules in the water contain nearly all secondary inter-
actions such as hydrogen bonding, p–p interactions, hydro-
phobic and hydrophilic, electrostatic and van de Waals forces,
a quantitative interpretation on this phenomenon is still a
challenge.
14 R. Mezzenga, J. Ruokolainen, N. Canilho, E. Kasemi, D. A. Schluter,
¨
W. B. Lee and G. H. Fredrickson, Soft Matter, 2009, 5, 92–97.
¨
´
15 M. Suarez, J. M. Lehn, S. C. Zimmerman, A. Skoulios and
B. Heinrich, J. Am. Chem. Soc., 1998, 120, 9526–9532.
16 G. Kestemont, V. de Halleux, M. Lehmann, D. A. Ivanov,
M. Watson and Y. H. Geerts, Chem. Commun., 2001, 2074–2075.
17 C. T. Imrie, Z. Lu, S. J. Picken and Z. Yildirim, Chem. Commun.,
2007, 1245–1247.
18 S. Viale, A. S. Best, E. Mendes and S. J. Picken, Chem. Commun.,
2005, 1528–1530.
19 J. Wu, M. Baumgarten, M. G. Debije, J. M. Warman and
K. Mullen, Angew. Chem., Int. Ed., 2004, 43, 5331–5335.
¨
20 H. Shimura, M. Yoshio, K. Hoshino, T. Mukai, H. Ohno and
T. Kato, J. Am. Chem. Soc., 2008, 130, 1759–1765.
21 J. O. Radler, I. Koltover, T. Salditt and C. R. Safinya, Science,
¨
1997, 275, 810–814.
22 K. R. Purdy, J. R. Bartles and G. C. L. Wong, Phys. Rev. Lett.,
2007, 98, 058105.
23 G. C. L. Wong, J. X. Tang, A. Lin, Y. Li, P. A. Janmey and
C. R. Safinya, Science, 2000, 288, 2035–2039.
24 G. C. L. Wong, A. Lin, J. X. Tang, Y. Li, P. A. Janmey and
C. R. Safinya, Phys. Rev. Lett., 2003, 91, 018103.
25 T. Kato, N. Mizoshita and K. Kishimoto, Angew. Chem., Int. Ed.,
2006, 45, 38–68.
In conclusion, we have designed and synthesized a new
organic discotic molecule consisting of 10 phenyl rings joined
symmetrically with sulfonic acid groups at the periphery,
which exhibits a hexagonal supramolecular columnar liquid
crystalline phase in aqueous solution. Unexpectedly the
diameter of the columns in the hexagonal liquid crystals is
about three times that of the discotic molecule. The spacing
of the hexagonal phase keeps relatively constant in two
sub-concentration ranges. The combination of ionic channels
and liquid crystalline properties leads to the achievement of
anisotropic ionic conductivity through macroscopic alignment
of the ionic nanochannels.
26 S. Schmidt-Rohr and Q. Chen, Nat. Mater., 2008, 7, 75–83.
27 B. Yameen, A. Kaltbeitzel, A. Langner, H. Duran, F. Muller,
¨
U. Gosele, O. Azzaroni and W. Knoll, J. Am. Chem. Soc., 2008,
¨
130, 13140–13144.
28 I. I. Potemkin, V. V. Vasilevskaya and A. R. Khokhlov, J. Chem.
Phys., 1999, 111, 2809–2817.
29 J. Groenewold and W. K. Kegel, J. Phys. Chem. B, 2001, 105,
11702–11709.
30 N. G. Jensen, R. J. Mashl, R. F. Bruinsma and W. M. Gelbart,
Phys. Rev. Lett., 1997, 78, 2477.
31 A. A. Kornyshev, D. J. Lee, S. Leikin and A. Wynveen, Rev. Mod.
Phys., 2007, 79, 943.
LB Li would like to thank Prof. Wim de Jeu (AMOLF) and
Prof. Stephen. J. Picken (Delft) for their great help in building
the soft matter group in Hefei. This work is supported by the
32 R. Golestanian, M. Kardar and T. B. Liverpool, Phys. Rev. Lett.,
1999, 82, 4456.
ꢀc
This journal is The Royal Society of Chemistry 2009
7562 | Chem. Commun., 2009, 7560–7562