Full Paper
F. Tuczek, Eur. J. Inorg. Chem. 2018, 1337; d) H. Broda, F. Tuczek, Angew.
Chem. Int. Ed. 2014, 53, 632; Angew. Chem. 2014, 126, 644; e) M. D.
Fryzuk, Chem. Commun. 2013, 49, 4866; f) M. D. Fryzuk, Science 2013,
340, 1530; g) Y. Tanabe, Y. Nishibayashi, Coord. Chem. Rev. 2013, 257,
2551; h) H. Broda, S. Hinrichsen, F. Tuczek, Coord. Chem. Rev. 2013, 257,
587.
a) F. Mus, A. B. Alleman, N. Pence, L. C. Seefeldt, J. W. Peters, Metallomics
2018, 10, 523; b) N. S. Sickerman, K. Tanifuji, Y. Hu, M. W. Ribbe, Chem.
Eur. J. 2017, 23, 12425; c) R. D. Milton, S. Abdellaoui, N. Khadka, D. R.
Dean, D. Leech, L. C. Seefeldt, S. D. Minteer, Energy Environ. Sci. 2016, 9,
2550; d) B. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean, L. C. See-
feldt, Chem. Rev. 2014, 114, 4041; e) M. W. Ribbe, Y. Hu, K. O. Hodgson,
B. Hedman, Chem. Rev. 2014, 114, 4063.
a) K. M. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M. W. Ribbe, F. Neese,
U. Bergmann, S. DeBeer, Science 2011, 334, 974; b) T. Spatzal, M. Aksoyo-
glu, L. Zhang, S. L. A. Andrade, E. Schleicher, S. Weber, D. C. Rees, O.
Einsle, Science 2011, 334, 940.
L. R. Doyle, A. J. Wooles, L. C. Jenkins, F. Tuna, E. J. L. McInnes, S. T. Liddle,
Angew. Chem. Int. Ed. 2018, 57, 6314; Angew. Chem. 2018, 130, 6422.
J. S. Anderson, J. Rittle, J. C. Peters, Nature 2013, 501, 84.
K. Arashiba, Y. Miyake, Y. Nishibayashi, Nat. Chem. 2011, 3, 120.
C. J. Pickett, K. S. Ryder, J. Talarmin, J. Chem. Soc., Dalton Trans. 1986,
1453.
959 (sh), 938 (m), 923 (m), 889 (w), 863 (w), 850 (w), 834 (vw), 814
(w), 790 (w), 744 (m), 718 (vw), 690 (m), 629 (s), 585 (sh), 573 (m),
515 (s), 490 (m), 467 (w) cm–1
.
[Mo(N2){prPP(Ph)P-pln}(PMe2Ph)2] (5): To sodium amalgam
(200 mg, 8.70 mmol Na, 2 mL of Hg) and THF (5 mL) was added
[MoBr3{prPP(Ph)P-pln}] (1-Br, 300 mg, 427 μmol) and further THF
(25 mL). After adding the coligand PMe2Ph (119 mg, 861 μmol), it
was stirred for 16 h at room temperature under nitrogen atmos-
phere. The solution was separated by filtration from amalgam. After
reducing the solvent in vacuo to a quantity of 10 mL, the solution
was filtered through neutral aluminum oxide. The solvent was re-
duced in vacuo to a quantity of 5 mL and methanol (10 mL) was
added. The precipitate was filtered, washed with methanol (10 mL)
and dried in vacuo to obtain the product as a red solid (120 mg,
157 μmol, 37 %). Anal. calcd. C36H55MoN2P5 (766.68): N 3.7 C 56.4,
H 7.2; found N 1.5, C 54.8, H 7.6. The C and N values are presumably
too low due to decoordination of the N2 ligand and the coligand
PMe2Ph. 31P{1H} NMR (161.98 MHz, [D8]THF, 300 K): δ = 25.0 (ddd,
[3]
[4]
[5]
[6]
[7]
[8]
2
2JPP = 30.1, 19.3, 18.4 Hz, 2 P, Pa/a′), 15.3 (dtd, JPP = 85.9, 30.1,
2
13.6 Hz, 1 P, Pb), 9.4 (dtd, JPP = 19.3, 18.4, 13.6 Hz, 1 P, Pc), 3.7
2
(“dq”= dtd, JPP = 85.9, 19.3, 19.3 Hz, 1 P, Pd) ppm. 1H-NMR
[9]
[10]
[11]
D. V. Yandulov, R. R. Schrock, Science 2003, 301, 76.
(400.13 MHz, [D8]THF, 300 K): δ = 7.65–7.63 (m, 2 H, CHortho (PhPR2)),
7.59–7.55 (m, 4 H, CHortho (PMe2Ph)), 7.36–7.34 (m, 2 H, CHmeta
(PhPR2)), 7.30–7.23 (m, 4 H, CHmeta (PMe2Ph)), 7.22–7.12 (m, 3 H,
CHpara (PhPR2, PMe2Ph)), 2.41–2.33 (m, 2 H, CH2), 1.89–1.77 (m, 8 H,
CH2), 1.68–1.57 (m, 2xd, 14 H, 4 × CH2, 2 × CH3), 1.55–1.34 (m, 14 H,
CH2),1.13–1.06 (m, 2 H, CH2) ppm. 13C{1H} NMR (100.62 MHz,
[D8]THF, 300 K): δ = 153.7 (dt, JCP = 2.5, 13.8 Hz, 1 C, Cipso (PMe2Ph)),
J. Chatt, A. J. Pearman, R. L. Richards, Nature 1975, 253, 39.
a) M. Hidai, K. Tominari, Y. Uchida, J. Am. Chem. Soc. 1972, 94, 110; b) M.
Hidai, K. Tominari, Y. Uchida, A. Misono, J. Chem. Soc., D 1969, 1392.
a) L. A. Wickramasinghe, T. Ogawa, R. R. Schrock, P. Müller, J. Am. Chem.
Soc. 2017, 139, 9132; b) M. R. Reithofer, R. R. Schrock, P. Müller, J. Am.
Chem. Soc. 2010, 132, 8349; c) R. R. Schrock, Angew. Chem. Int. Ed. 2008,
47, 5512; Angew. Chem. 2008, 120, 5594; d) R. R. Schrock, Acc. Chem. Res.
2005, 38, 955.
[12]
151.8 (dd, JCP = 5.4, 17.0 Hz, 1 C, Cipso (PMe2Ph)), 138.6 (dd, JCP
3.7, 19.1 Hz, 1 C, Cipso (PhPR2)), 132.4 (d, JPC = 9.3 Hz, 2 C, Cortho
(PhPR2)), 131.1 (d, JCP = 8.9 Hz, 2 C, Cortho (PMe2Ph)), 130.2 (d, JCP
8.5 Hz, 2 C, Cortho (PMe2Ph)), 128.5 (d, JCP = 6.0 Hz, 2 C, Cmeta
(PMe2Ph)), 128.2 (d, JCP = 6.1 Hz, 2 C, Cmeta (PMe2Ph)), 127.7 (d, JCP
=
[13]
[14]
[15]
[16]
[17]
[18]
S. Kuriyama, K. Arashiba, K. Nakajima, H. Tanaka, N. Kamaru, K. Yoshizawa,
Y. Nishibayashi, J. Am. Chem. Soc. 2014, 136, 9719.
=
K. Arashiba, E. Kinoshita, S. Kuriyama, A. Eizawa, K. Nakajima, H. Tanaka,
K. Yoshizawa, Y. Nishibayashi, J. Am. Chem. Soc. 2015, 137, 5666.
A. Eizawa, K. Arashiba, H. Tanaka, S. Kuriyama, Y. Matsuo, K. Nakajima,
K. Yoshizawa, Y. Nishibayashi, Nat. Commun. 2017, 8, 14874.
K. Arashiba, A. Eizawa, H. Tanaka, K. Nakajima, K. Yoshizawa, Y. Nishibaya-
shi, Bull. Chem. Soc. Jpn. 2017, 90, 1111.
Y. Ashida, K. Arashiba, K. Nakajima, Y. Nishibayashi, Nature 2019, 568,
536.
Y. Ashida, K. Arashiba, H. Tanaka, A. Egi, K. Nakajima, K. Yoshizawa, Y.
Nishibayashi, Inorg. Chem. 2019, 58, 8927.
S. E. Creutz, J. C. Peters, J. Am. Chem. Soc. 2014, 136, 1105.
N. X. Gu, G. Ung, J. C. Peters, Chem. Commun. 2019, 55, 5363.
J. Higuchi, S. Kuriyama, A. Eizawa, K. Arashiba, K. Nakajima, Y. Nishibaya-
shi, Dalton Trans. 2018, 47, 1117.
Y. Sekiguchi, K. Arashiba, H. Tanaka, A. Eizawa, K. Nakajima, K. Yoshizawa,
Y. Nishibayashi, Angew. Chem. Int. Ed. 2018, 57, 9064; Angew. Chem.
2018, 130, 9202.
a) M. J. Chalkley, T. J. Del Castillo, B. D. Matson, J. C. Peters, J. Am. Chem.
Soc. 2018, 140, 6122; b) J. Fajardo, J. C. Peters, J. Am. Chem. Soc. 2017,
139, 16105; c) M. J. Chalkley, T. J. Del Castillo, B. D. Matson, J. P. Roddy,
J. C. Peters, ACS Cent. Sci. 2017, 3, 217; d) T. J. Del Castillo, N. B. Thomp-
son, J. C. Peters, J. Am. Chem. Soc. 2016, 138, 5341.
=
7.3 Hz, 2 C, Cmeta (PhPR2)), 127.6 (dd, JCP = 1.3 Hz, 1 C, Cpara (PhPR2)),
127.4 (br s, 1 C, Cpara (PMe2Ph)), 127.3 (br s, 1 C, Cpara (PMe2Ph)),
37.3 (m, 2 C, CH2), 34.2–34.0 (m, 2 C, CH2), 32.2 (d, JCP = 16.8 Hz,
2 C, CH2), 28.2–28.0 (dm, 2 C, CH3), 27.5 (s, 2 C, CH2), 27.2 (s, 2 C,
CH2), 23.3–23.1 (m, 2 C, CH2), 21.7 (d, 2 C, JCP = 2.5 Hz), 21.6 (br s,
1 C, CH3 (PMe2Ph)), 21.4 (br s, 1 C, CH3 (PMe2Ph)) ppm. IR (ATR): ν =
˜
3086 (vw), 3072 (vw), 3047 (w), 3017 (vw), 2995 (vw), 2959 (m), 2934
(sh), 2911 (m), 2889 (sh), 2853 (br m), 2804 (sh), 2008 (br w), 1944
(sh, NN), 1931 (s, NN), 1755 (vw), 1584 (w), 1569 (vw), 1487 (w),
1464 (vw), 1449 (w), 1430 (w), 1421 (sh), 1408 (w), 1375 (vw), 1319
(vw), 1306 (vw), 1287 (w), 1260 (m), 1181 (vw), 1156 (vw), 1145 (w),
1095 (br m), 1072 (sh), 1056 (m), 1019 (br m), 989 (sh), 972 (sh), 945
(sh), 929 (m), 923 (m), 889 (m), 863 (br w), 844 (br w), 817 (sh), 799
(br m), 773 (sh), 746 (sh), 739 (m), 704 (sh), 695 (br m), 657 (br m),
614 (m), 551 (vw), 519 (sh), 506 (m), 490 (m), 474 (m) cm–1. Raman:
[19]
[20]
[21]
[22]
[23]
ν = 3051 (m), 2970 (br sh), 2940 (m), 2908 (s), 2861 (sh), 2000 (vw),
˜
1944 (m), 1933 (m), 1812 (vw), 1585 (m), 1568 (w), 1488 (vw), 1450
(w), 1423 (w), 1413 (w), 1400 (w), 1269 (w), 1251 (w), 1186 (w), 1156
(w), 1100 (br m), 1028 (m), 1001 (s), 931 (w), 920 (w), 895 (vw), 874
(vw), 747 (vw), 738 (vw), 706 (vw), 691 (w), 661 (m), 618 (m), 521
[24]
[25]
J. Krahmer, H. Broda, C. Näther, G. Peters, W. Thimm, F. Tuczek, Eur. J.
Inorg. Chem. 2011, 4377.
L. Söncksen, C. Gradert, J. Krahmer, C. Näther, F. Tuczek, Inorg. Chem.
2013, 52, 6576.
(vw), 498 (m), 488 (m), 442 (m) cm–1
.
[26]
[27]
H. Broda, J. Krahmer, F. Tuczek, Eur. J. Inorg. Chem. 2014, 3564.
S. Hinrichsen, A. Kindjajev, S. Adomeit, J. Krahmer, C. Näther, F. Tuczek,
Inorg. Chem. 2016, 55, 8712.
H. Broda, S. Hinrichsen, J. Krahmer, C. Näther, F. Tuczek, Dalton Trans.
2014, 43, 2007.
S. Hinrichsen, A.-C. Schnoor, K. Grund, B. Flöser, A. Schlimm, C. Näther, J.
Krahmer, F. Tuczek, Dalton Trans. 2016, 45, 14801.
S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D.
Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, Nat. Catal. 2018, 1, 490.
Keywords: Nitrogen fixation · Phospholanes ·
Molybdenum · Synthesis design
[28]
[29]
[30]
[1] A. D. Allen, C. V. Senoff, Chem. Commun. 1965, 621.
[2] a) Y. Nishibayashi, Transition metal-dinitrogen complexes. Preparation and
reactivity, 1. Aufl., Wiley-VCH, Weinheim, Germany, 2019; b) Y. Nishibaya-
shi, Dalton Trans. 2018, 47, 11290; c) N. Stucke, B. M. Flöser, T. Weyrich,
Eur. J. Inorg. Chem. 2019, 1–13
11
© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim