J . Org. Chem. 2000, 65, 5951-5955
5951
Asym m etr ic Con ju ga te 1,4-Ad d ition of Ar ylbor on ic Acid s to
r,â-Un sa tu r a ted Ester s Ca ta lyzed by Rh od iu m (I)/(S)-bin a p
Satoshi Sakuma, Masaaki Sakai, Ryoh Itooka, and Norio Miyaura*
Division of Molecular Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, J apan
miyaura@org-mc.eng.hokudai.ac.jp
Received February 15, 2000
Arylboronic acids underwent the conjugate 1,4-addition to R,â-unsaturated esters to give â-aryl
esters in high yields in the presence of a rhodium(I) catalyst. The addition of arylboronic acids to
isopropyl crotonate resulted in high yields and high enantioselectivity exceeding 90% ee in the
presence of 3 mol % of Rh(acac)(C2H4)2 and (S)-binap at 100 °C. The rhodium/(S)-binap complex
provided (R)-3-phenylbutanoate in the addition of phenylboronic acid to benzyl crotonate. The effects
on the enantioselectivity of chiral phosphine ligands, rhodium precursors, and substituents on R,â-
unsaturated esters are discussed, as well as the mechanistic aspect of the catalytic cycle.
Conjugate 1,4-addition reactions by rhodium-,1
nickel-,2 ruthenium-,3 or copper4 complexes are of great
value in asymmetric synthesis since various chiral aux-
iliaries are now available for the metal-catalyzed reac-
tions.5 We have recently reported the rhodium-catalyzed
1,4-conjugate addition reactions of aryl- and 1-alkenyl-
boronic acids to enones in an aqueous solvent, which
proceeds through a sequence of boron-rhodium trans-
metalation, yielding an organorhodium(I) species and its
addition to enones.6 Hayashi7 and the joint research with
them8 demonstrated asymmetric variants by using a
rhodium(I)-chiral phosphine complex. Among the chiral
phosphines examined, the binap ligand9 developed by
Noyori for asymmetric hydrogenation of alkenes was
found to be the best chiral auxiliary, achieving over 90%
ee for cyclic and acyclic enones. The efficiency of trans-
metalation from boron to rhodium was also demonstrated
in catalytic 1,2-additions of organoboronic acids to alde-
hydes10 and N-sulfonyl imines.11 The utility of potassium
organotrifluoroborates (RBF3K) as the nucleophile for
both rhodium-catalyzed 1,4- and 1,2-additions was re-
cently reported by Batey.12
Here, we report a conjugate 1,4-addition of arylboronic
acids (2) to R,â-unsaturated esters (1) yielding optically
active â-aryl esters (3) in the presence of a rhodium(I)-
binap catalyst (eq 1).13
(1) (a) Sawamura, M.; Hamashima, H.; Ito, Y. J . Am. Chem. Soc.
1992, 114, 8295-8296. (b) Sawamura, M.; Hamashima, H.; Ito, Y.
Tetrahedron 1994, 50, 4439-4454.
(2) (a) Ikeda, S.; Cui, D.-M.; Sato, Y. J . Am. Chem. Soc. 1999, 121,
4712-4713. (b) Bolm, C. Tetrahedron: Asymmetry 1991, 2, 701-704.
(c) Soai, K.; Hayasaka, T.; Ugajin, S. J . Chem. Soc., Chem. Commun.
1989, 516-517. (d) Petrier, C.; Barbosa, J . C. S.; Dupuy, C.; Luche,
J .-L. J . Org. Chem. 1985, 50, 5761-5765. (e) Cacchi, S.; Palmieri, G.
J . Organomet. Chem. 1985, 282, C3-6. (f) Greene, A. E.; Lansard,
J .-P.; Luche. J .-L.; Petrier, C. J . Org. Chem. 1984, 49, 931-932.
(g) Dayrit, F. M.; Gladkowski, D. E.; Schwartz, J . Ibid. 1980, 102,
3976-3978.
(3) (a) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya,
H.; Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.;
Fukuoka, A. J . Am. Chem. Soc. 1995, 117, 12436-12451. (b) Mitsudo,
T.; Nakagawa, Y.; Watanabe, K.; Hori, Y.; Misawa, H.; Watanabe, H.;
Watanabe, Y. J . Org. Chem. 1985, 50, 565-571. (c) Trost, B. M. Angew.
Chem., Int. Ed. Engl. 1995, 34, 259-281.
(4) (a) Alexakis, A. In Transition Metals for Organic Synthesis;
Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1,
Chapter 3.10. (b) Lipshutz, B. H. In Organometallics in Synthesis;
Schlosser, M., Ed.; Wiley: New York, 1994; p 283.
(5) For reviews, see: (a) Schmalz, H.-G. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, C1991;
Vol. 4, Chapter l.5. (b) Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992,
92, 771-806. (c) Noyori, R. Asymmetric Catalysis in Organic Synthesis;
J ohn Wiley and Sons: NewYork, 1994; pp 207-212. (d) Seyden-Penne.
Chiral Auxiliaries and Ligands in Asymmetric Synthesis; J ohn Wiley
and Sons: NewYork, 1995. (e) Tomioka, K.; Nagaoka, Y.; Yamaguchi,
M. In Comprehensive Asymmetric Catalysis I-III; J acobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 3, Chapter
31.
Rea ction Con d ition s
The 1,4-addition reactions of phenylboronic acid to
the representative R,â-unsaturated esters in the presence
of [Rh(cod)(MeCN)2]BF4 (3 mol %) are summarized in
Table 1.
The reaction was highly dependent on the substituent
(R1 in 1), which may affect the rate of insertion of 1 into
a rhodium-carbon bond. Thus, the additions to both
dimethyl fumarate and diethyl maleate smoothly pro-
ceeded at room temperature (entries 1 and 2), whereas
the additions to cinnamate, acrylate, and crotonate were
heated to 50, 80, and 100 °C to complete the reactions
(9) 2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl. See: Noyori, R.;
Takaya, H. Acc. Chem. Res. 1990, 23, 345-350.
(10) Sakai, M.; Ueda, M.; Miyaura, N. Angew. Chem., Int. Ed. Engl.
1998, 37, 3279-3280. Ueda, M.; Miyaura, N. J . Org. Chem. 2000, 65,
4450-4452.
(11) Ueda, M.; Miyaura, N. J . Organomet. Chem. 2000, 595, 31-
35.
(6) Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16,
4229-4231.
(12) Batey, R. A.; Thadani, A. N.; Smil, D. V. Org. Lett. 1999, 1,
1683-1686.
(13) Preliminary results were discussed in The Xth International
Conference on Boron Chemistry; Durham, J uly 11-15, 1999 and
Symposium on Organic and Inorganic Syntheses via Boranes in
American Chemical Society 218th Meeting; New Orleans, Aug 22-
25, 1999.
(7) (a) Hayashi, T.; Senda, T.; Takaya, Y.; Ogasawara, M. J . Am.
Chem. Soc. 1999, 121, 11591-11592. (b) Takaya, Y.; Ogasawara, M.;
Hayashi, T.; Tetrahedron Lett. 1998, 39, 8479-8482.
(8) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura,
N. J . Am. Chem. Soc. 1998, 120, 5579-5580.
10.1021/jo0002184 CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/23/2000