ACCEPTED MANUSCRIPT
Tetrahedron
9
3.59 (d, J = 13.2 Hz, 1H), 1.70 (d, J = 7.2 Hz, 3H); 13C
NMR (100 MHz, CDCl3): δ 136.64, 130.47, 129.84 (2x),
128.93 (2x), 128.48 (2x), 128.18, 127.90 (2x), 127.83,
61.07, 55.12, 15.32.
Caupene, C.; Boudou, C.; Perrio, S.; Metzner, P. J. Org. Chem. 2005,
70, 2812. For Pd(0), see: (d) Maitro, G.; Prestat, G.; Madec, D.; Poli,
G. J. Org. Chem. 2006, 71, 7449.
(5) The use of β-sulfinyl ester on the Pd2dba3-mediated arylation, see: (a)
Maitro, G.; Vogel, S.; Sadaoul, M.; Prestat, G.; Madec, D.; Poli, G.
Org. Lett. 2007, 9, 5493. (b) Maitro, G.; Vogel, S.; Prestat, G.;
Madec, D.; Poli, G. Org. Lett. 2006, 8, 5951. (c) Maitro, G.; Prestat,
G.; Madec, D.; Poli, G. Synlett 2006, 7, 1055. (d) Maitro, G.; Prestat,
G.; Madec, D.; Poli, G. J. Org. Chem. 2006, 71, 7449. Notably, only
one example (treatment of α-phenylsulfinyl acetone) was reported in
77% yield for overnight.
(6) The use of β-sulfinyl silane, for fluoride-mediated alkylation, see: (a)
Oida, T.; Nakamura, M.; Takashima, Y.; Hayashi, Y. Bull. Inst.
Chem. Res., Kyoto Univ. 1992, 70, 295. For Pd(0)/fluoride-mediated
arylation, see: (b) Jia, T.; Zhang, M.; Jiang, H.; Wang, C. Y.; Walsh,
P. J. J. Am. Chem. Soc. 2015, 137, 13887. (c) Jiang, H.; Jia, T.;
Zhang, T.; Zhang, M.; Walsh, P. J. Org. Lett. 2016, 18, 972.
(7) The use of 2-sulfinyl acrylate on the Pd2dba3-mediated arylation, see:
(a) Singh, S. P.; O’Donnell, J. S.; Schwan, A. L. Org. Biomol. Chem.
2010, 8, 1712. (b) Schwan, A. L.; Verdu, M. J.; Singh, S. P.;
O’Donnell, J. S.; Ahmadi, A. N. J. Org. Chem. 2009, 74, 6851.
(8) The use of allyl aryl sulfoxide precursor on the Pd2dba3-mediated
arylation, see: Bernoud, E.; Le Duc, G.; Bantreil, X.; Prestat, G.;
Madec, D.; Poli, G. Org. Lett. 2010, 12, 320.
(9) The use of aryl benzyl sulfoxide, for the formation of
diarylsulfoxides, see: (a) Jia, T.; Bellomo, A.; Montel, S.; Zhang, M.;
El Baina, K.; Zheng, B.; Walsh, P. J. Angew. Chem. Int. Ed. 2014, 53,
260. (b) Jia, T.; Zhang, M.; Sagamanova, I. K.; Wang, C. Y.; Walsh,
P. J. Org. Lett. 2015, 17, 1168. For the formation of trans-stilbenes,
see: (c) Zhang, M.; Jia, T.; Yin, P.; Carroll, P. J.; Schelter, E. J.;
Walsh, P. J. Angew. Chem. Int. Ed. 2014, 53, 10755. (d) Schwan, A.
L. ChemCatChem 2015, 7, 226. For the formation of
diarylacetylenes, see: (e) Zhang, M.; Jia, T.; wang, C. Y.; Walsh, P. J.
J. Am. Chem. Soc. 2015, 137, 10346.
(10) The use of t-butyl benzyl sulfoxide, for the formation of trans-
stilbenes, see: (a) Zhang, M.; Jia, T.; Sagamanova, I. K.; Pericas, M.
A.; Walsh, P. J. Org. Lett. 2015, 17, 1164. For the formation of
diarylsulfoxides, see: (b) Gelat, F.; Lohier, J.-F.; Gaumont, A.-C.;
Perrio, S. Adv. Synth. Catal. 2015, 357, 2011.
4.5. A synthetic procedure of compounds 6c and 7c is as
follows: (In Table 1, entry 7). K2CO3 (460 mg, 3.3 mmol)
was added to a solution of 4a (245 mg, 1.0 mmol) in
acetone (10 mL) at 25 oC. The reaction mixture was stirred
o
at 25 C for 10 min. 3-Methoxybenzylic bromide 5c (405
mg, 2.0 mmol) was added to the reaction mixture at 25 oC.
o
The reaction mixture was stirred at 57 C for 20 h. The
o
reaction mixture was cooled to 25 C and the solvent was
concentrated. The residue was diluted with water (10 mL)
and the mixture was extracted with CH2Cl2 (3 x 20 mL).
The combined organic layers were washed with brine,
dried, filtered and evaporated to afford crude product under
reduced pressure. Purification on silica gel (hexane/EtOAc
= 2/1~1/2) afforded 6c (50%) and 7c (20%).
4.5.1. 3-(3-Methoxyphenyl)-1-phenylpropenone (7c).
Yield = 20% (48 mg); Colorless oil; HRMS (ESI, M++1)
1
calcd for C16H15O2 239.1072, found 239.1076; H NMR
(400 MHz, CDCl3): δ 8.04-8.01 (m, 2H), 7.77 (d, J = 16.0
Hz, 1H), 7.61-7.57 (m, 1H), 7.53-7.49 (m, 3H), 7.34 (t, J =
8.0 Hz, 1H), 7.24 (br d, J = 8.0 Hz, 1H), 7.46 (br t, J = 2.0
Hz, 1H), 6.97 (dd, J = 2.4, 8.4 Hz, 1H), 3.85 (s, 3H); 13C
NMR (100 MHz, CDCl3): δ 190.51, 159.89, 144.72,
138.12, 136.20, 132.76, 129.90, 128.59 (2x), 128.46 (2x),
122.33, 121.05, 116.26, 113.38, 55.30.
Acknowledgments
(11) For the sulfenate anion mediated enantio- and diastereoselective
synthesis of sulfoxides, see: (a) Caupene, C.; Boudou, C.; Perrio, S.;
Metzner, P. J. Org. Chem. 2005, 70, 2812. (b) Soderman, S. C.;
Schwan, A. L. Org. Lett. 2011, 13, 4192. (c) Lohier, J.-F.; Foucoin,
F.; Jaffres, P.-A.; Garcia, J. I.; Sopkova-de Oliveira Santos, J.; Perrio,
S.; Metzner, P. Org. Lett. 2008, 10, 1271. (d) Schwan, A. L.; Verdu,
M. J.; Singh, S. P.; O’Donnell, J. S.; Ahmadi, A. N. J. Org. Chem.
2009, 74, 6851.
(12) For reviews on sulfoxide chemistry, see: (a) Wojaczynnska, E.;
Wojaczynnski, J. Chem. Rev. 2010, 110, 4303. (b) O’Mahony, G. E.;
Kelly, P.; Lawrence, S. E.; Maguire, A. R. ARKIVOC 2011, 1, 1. (c)
Bolm, C. Coord. Chem. Rev. 2003, 237, 245.
(13) (a) Pitchen, P.; Dunach, E.; Deshmukh, M. N.; Kagan, H. B. J. Am.
Chem. Soc. 1984, 106, 8188. (b) di Furia, F.; Modena, G.; Seragla, R.
Synthesis 1984, 325.
(14) Andersen, K. K.; Gaffield, W.; Papanikolaou, N. E.; Foley, J. W.;
Perkins, R. I. J. Am. Chem. Soc. 1964, 86, 5637. (b) Senanayake, C.
H.; Krishnamurthy, D.; Lu, Z. H.; Han, Z. X.; Gallou, I.
Aldrichimica Acta 2005, 38, 93.
The authors would like to thank the Ministry of Science
and Technology of the Republic of China for its financial
support (MOST 104-2113-M-037-012). This study is
supported partially by Kaohsiung Medical University “Aim
for the Top Universities Grant, grant No. KMU-
TP104PR15”.
References and notes
(1) For reviews on sulfenate anion chemistry, see: (a) Kharasch, N.;
Potempa, S. J.; Wehrmeister, H. L. Chem. Rev. 1946, 39, 263. (b)
O’Donnell, J. S.; Schwan, A. L. J. Sulfur Chem. 2004, 25, 183. (c)
Maitro, G.; Prestat, G.; Madec. D.; Poli, G. Tetrahedron: Asymmetry
2010, 21, 1075. (d) Schwan, A. L.; Soderman, S. C. Phosphorus,
Sulfur, Silicon Relat. Elem. 2013, 188, 275.
(2) Aversa, M. C.; Bonaccorsi, P.; Madec, D.; Prestat, G.; Poli, G. In
Innovative Catalysis in Organic Synthesis: Oxidation,
Hydrogenation, and C-X Bond Forming Reactions (Ed.: Andersson,
P. G.), Wiely-VCH, Weinheim, 2012.
(3) (a) Hall, A.; Karplus, P. A.; Poole, L. B. FEBS J. 2009, 276, 2469. (b)
Paulsen, C. E.; Carroll, K. S. ACS Chem. Biol. 2010, 5, 47. (c) Poole,
L. B.; Nelson, K. J. Curr. Opin. Chem. Biol. 2008, 12, 18. (d)
Griffiths, S. W.; King, J.; Cooney, C. L. J. Biol. Chem. 2002, 277,
25486.
(4) The use of β-sulfinyl ester on the alkylation, for PTC/CsOH, see: (a)
Zong, L.; Ban, X.; Kee, C. W.; Tan, C.-H. Angew. Chem. Int. Ed.
2014, 53, 11849. For t-BuOK, see: (b) Lohier, J.-F.; Foucoin, F.;
Jaffres, P.-A.; Garcia, J. I.; Sopkova-de Oliveira Santos, J.; Perrio, S.;
Metzner, P. Org. Lett. 2008, 10, 1271. For NaHMDS, see: (c)
(15) (a) Chang, M.-Y.; Cheng, Y.-C.; Lu, Y.-J. Org. Lett. 2015, 17, 1264.
(b) Chang, M.-Y.; Cheng, Y.-J. Org. Lett. 2016, 18, 1682.
(16) CCDC 1469339 (6f) contains the supplementary crystallographic
data for this paper. This data can be obtained free of charge via
Union Road, Cambridge CB2 1EZ, UK; fax: 44-1223-336033; e-
mail: deposit@ccdc.cam.ac.uk).
(17) Synthesis of omeprazole and the related derivatives, see: (a) Senn-
Bilfinger, J.; Kruger, U.; Sturm, E.; Figala, V.; Klemm, K.; Kohl, B.;
Rainer, G.; Schaefer, H.; Blake, T. J.; Darkin, D. W.; Ife, R. J.;
Leach, C. A.; Mitchell, R. C.; Pepper, E. S.; Salter, C. J.; Viney, N.
J.; Huttner, G.; Zsolnai, L. J. Org. Chem. 1987, 52, 4582. (b) Cotton,
H.; Elebring, T.; Larsson, M.; Li, L.; Sorensen, H.; von Unge, S.
Tetrahedron: Asymmetry 2000, 11, 3819. (c) Jiang, B.; Zhao, X.-L.;
Dong, J.-J.; Wang, W. J. Eur. J. Org. Chem. 2009, 7, 987. (c) Che,