10.1002/anie.202105492
Angewandte Chemie International Edition
RESEARCH ARTICLE
[3]
[4]
a) H. C. Kolb, M. S.VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994,
94, 2483; b) G. Dong, P. Teo, Z. K. Wickens, R.H. Grubbs, Science 2011,
333, 1609.
Interestingly, the separation of the catalyst is straightforward
without any filtration orcentrifugation by simplyusing a magnet.
Rick Reeves(Author, Editor), Maryann Lawrence, Epoxides: Synthesis,
Reactions and Uses (Chemistry Research and Applications) Nova
Science Publishers, Inc(1. Dezember 2017)
[5]
[6]
[7]
[8]
[9]
T. E. Muller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev.
2008, 108, 3795-3892
Y. Wang, A. Kostenko, S. Yao, M. Driess, J. Am. Chem. Soc. 2017, 139,
13499-13506.
S. Monfette, Z. R. Turner, S. P. Semproni, P. J. Chirik, J. Am. Chem. Soc.
2012, 134, 4561-4.
A. Primo, F. Neatu, M. Florea, V. Parvulescu, H. Garcia, Nat. Commun.
2014, 5, 5291.
100
80
60
40
20
0
a
b
R. Xu, S. Chakraborty, S. M. Bellows, H. Yuan, T. R. Cundari, W. D.
Jones, ACS Catal. 2016, 6, 2127-2135.
0
1
2
3
4
5
6
Run time
[10] R. C. Cammarota, C. C. Lu, Tuning Nickel with Lewis Acidic Group 13
Metalloligands for Catalytic Olefin Hydrogenation. J. Am. Chem. Soc.
2015, 137, 12486-9.
Figure 3. Recycling and stabilityofNi@C-450 in the hydrogenation of1-decene.
aReaction conditions for complete conversion: 0.5 mmol 1-decene, 20 mg
Ni@C-450 2 mL methanol, RT, 1 bar H2, 8 h. bReaction conditions forlessthan
50% conversation: Same as‘a’ with 10 mg catalystfor 4 h.
[11] F.K. Scharnagl, M. F. Hertrich, C. Kreyenschulte, H. Lund, R. Jackstell,
M. Beller, Sci. Adv. 2018, 4, No.eaau1248.
[12] F. S. Mederos, J. Ancheyta, I. Elizalde, Appl. Catal. A 2012, 425-426, 13-
27.
[13] B. M. Goortan, A. Gaurav, A. Deshpande, F. T. T. NG, G. L. Rempel, Ind.
Eng. Chem. Res. 2015, 54, 3570–3581.
Conclusion
[14] (a) G. Rubulotta, K. L. Luska, C. A. Urbina-Blanco, T. Eifert, R. Palkovits,
E. A. Quadrelli, C. Thieuleux, W. Leitner, ACS SustainableChem. Eng.
2017, 5, 3762−3767; b) A. Sreenavya, A. Sahu, A. Sakthivel, Ind. Eng.
Chem. Res. 2020, 59, 11979-11990
Here, we describe a novel nano-structured Ni-catalyst for
practical and convenient hydrogenation of various alkenes.
Calcination of simple Ni-saltson carbon support creates a highly
stable and reusable core-shellmaterial, which activateshydrogen
and deuterium alreadyat ambient conditions (room temperature,
1 bar). The optimal catalyst (Ni@C-450), showed excellent
activity and selectivity for the hydrogenation of terminal and
internal aliphatic and aromatic alkenes including functionalized
ones. Noteworthy, different deuterium-labeled alkanes can be
prepared using Ni@C-450 at room temperature in presence of 1
bar D2.
[15] L. Solange, B. Sonia, M. Bernard, M. Jacqueline Luche, A. Marquet, J.
Am. Chem. Soc. 1977, 100, 1558-1563.
[16]
U.P. Laverdura, L. Rossi, F. Ferella, C. Courson, A. Zarli, R. Alhajyoussef,
K. Gallucci, ACS Omega 2020, 5, 22901-22913.
[17] A. Pews-Davtyan, F. K. Scharnagl, M. F. Hertrich, C. Kreyenschulte, S.
Bartling, H. Lund, R. Jackstell, M. Beller, Green Chem. 2019, 21, 5104-
5112.
[18] M. Espinal Viguri, S. E. Neale, N. T. Coles, S. A. Macgregor, R. L.
Webster, J. Am. Chem. Soc. 2019, 141, 572-582.
[19] K. Tokmic, C. R. Markus, L. Zhu, A. R. Fout, J. Am. Chem. Soc. 2016,
138, 11907-13.
Conflict of interest
[20] G. Hahn, P. Kunnas, N. deJonge, R. Kempe, Nat. Catal. 2018, 2, 71-77.
[21] L. C. Liu, A. Corma, Chem. Rev. 2018, 118, 10, 4981–5079.
[22] I. Yarulina, K. De Wispelaere, S. Bailleul, J. Goetze, M. Radersma, E.
Abou-Hamad, I. Vollmer, M. Goesten, B. Mezari, E. J. M. Hensen, J. S.
Martinez-Espin, M. Morten, S. Mitchell, J. Perez-Ramirez, U. Olsbye, B.
M. Weckhuysen, V. Van Speybroeck, F. Kapteijn, J. Gascon, Nat. Chem.
2018, 10, 804-812.
The authors declare no competing financial interest.
Acknowledgements
We gratefully acknowledge the European Research Council(EU
project 670986-NoNaCat) and the State of Mecklenburg-
Vorpommern forfinancialand generalsupport. Jie Gao thanks the
China Scholarship Council(CSC) for financialsupport. We thank
the analytical staff of Leibniz-Institut für Katalyse e.V., Germany
and Dalian Instituteof ChemicalPhysics, China for theirexcellent
service.
[23] Y. Zhang, X. J. Cui, F. Shi, Y.Q. Deng, Chem. Rev. 2012, 112, 4, 2467–
2505.
[24] L. Zhang, Y. Ren, W. Liu, A. Wang, T. Zhang, National ScienceReview
2018, 5, 653-672.
[25] R. V. Jagadeesh, K. Murugesan, A. S. Alshammari, H. Neumann, M. M.
Pohl, J. Radnik, M. Beller, Science 2017, 358, 326-332.
[26] R. V. Jagadeesh, A. E. Surkus, H. Junge, M. M. Pohl, J. Radnik, J.
Rabeah, H. Huan, V. Schünemann, A. Brückner, M. Beller, Science 2013,
342, 1073.
[27] X. Kang, H. Liu, M. Hou, X. Sun, H. Han, T. Jiang, Z. Zhang, B. Han,
Angew. Chem. Int. Ed. 2016, 55, 1080.
[28] Y. Zhang, X. J Cui, F. Shi, Y.Q. Deng, Chem. Rev. 2012, 112, 4, 2467–
2505.
Keywords: catalysis• nanoparticles• alkenes• hydrogenation •
deuteration • nickel
[29] J. Gao, Q. Jiang, Y. Liu, W. Liu, W. Chu, D. S. Su, Nanoscale 2018, 10,
14207-14219.
[30] J. Li, Y. Zhou, X. Xiao, W. Wang, N. Wang, W. Qian, W. Chu, ACSAppl.
Mater. Interfaces 2018, 10, 41224-41236.
[31] S. Li, Y. Liu, H. Gong, K.-H. Wu, H. Ba, C. Duong-Viet, C. Jiang, C.
Pham-Huu, D. Su, ACSAppl. Nano Mater. 2019, 2, 3780-3792.
[32] S. Li, Q. Gu, N. Cao, Q. Jiang, C. Xu, C. Jiang, C. Chen, C. Pham-Huu,
Y. Liu, J. Mater. Chem. A 2020, 8, 8892-8902.
[1]
[2]
a) Yury Kissin, Alkene Polymerization Reactions with Transition Metal
Catalysts, 1st Edition. Elsevier Science, 2008; b) E. S. Cueny, M. R.
Nieszala, R. D. J. Froese, C. R. Landis, ACS Catal. 2021, 11, 4301-4309.
a) B. Morandi, Z. K. Wickens, R.H. Grubbs, Angew. Chem. Int. Ed. 2013,
52, 2944; b) R. A. Fernandes, A. K. Jha, P. Kumar, Catal. Sci. Tec., 2020,
10, 7448–7470.
6
This article is protected by copyright. All rights reserved.