Page 13 of 16
The Journal of Organic Chemistry
Our World: the 2030 Agenda for Sustainable Development:
Lightburn, T. E.; Tan, K. L.; Wang, D. “Silicon Nanowires as
Photoelectrodes for Carbon Dioxide Fixation” Angew. Chem. Int.
Ed. 2012, 51, 6709-6712.
2018). c) Borkey, P. The Role of Government Policy in Supporting
the Adoption of Green/Sustainable Chemistry Innovations. OECD
Environmental, Health and Safety Publications; Series on Risk
Management No. 26; OECD Organisation for Economic Co-
1
2
3
4
5
6
7
8
6) a) Hou, J.; Ee, A.; Feng, W.; Xu, J. H.; Zhao, Y.; Wu, J. “Visible-
Light-Driven Alkyne Hydro-/Carbocarboxylation Using CO2 via
Iridium/Cobalt Dual Catalysis for Divergent Heterocycle
Synthesis” J. Am. Chem. Soc. 2018, 140, 5257-5263. b) Berton, M.;
Mello, R.; Acerete, R.; González-Núñez, M. E. “Photolysis of
Tertiary Amines in the Presence of CO2: The Paths to Formic Acid,
α-Amino Acids, and 1,2-Diamines” J. Org. Chem. 2018, 83, 96-103.
c) Seo, H.; Liu, A.; Jamison, T. F. “Direct -Selective
Hydrocarboxylation of Styrenes with CO2 Enabled by Continuous
Flow Photoredox Catalysis” J. Am. Chem. Soc. 2017, 139, 13969-
13972. d) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N.
“Visible-Light-Driven Carboxylation of Aryl Halides by the
Combined Use of Palladium and Photoredox Catalysts” J. Am.
Chem. Soc. 2017, 139, 9467-9470. e) Yatham, V. R.; Shen, Y.;
Martin, R. “Catalytic Intermolecular Dicarbofunctionalization of
Styrenes with CO2 and Radical Precursors” Angew. Chem. Int. Ed.
2017, 56, 10915-10919. f) Ye, J. H.; Miao, M.; Huang, H.; Yan, A. A.;
Yin, Z. B.; Zhou, W. J.; Yu, D. G. “Visible-Light-Driven Iron-
Promoted Thiocarboxylation of Styrenes and Acrylates with CO2”
Angew. Chem. Int. Ed. 2017, 56, 15416-15420. g) Seo, H.; Katcher,
M. H.; Jamison, T. F. “Photoredox activation of carbon dioxide for
amino acid synthesis in continuous flow” Nature Chem. 2017, 9,
453-456. h) Murata, K.; Numasawa, N.; Shimomaki, K.; Takaya, J.;
operation
and
Development:
Paris
2012.
24, 2018)
9
2) a) Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.;
Sternberg, A.; Bardow, A.; Leitner, W. “Sustainable Conversion of
Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle
Assessment” Chem. Rev. 2018, 118, 434-504. b) Chemical
Transformations of Carbon Dioxide in Topics in Current
Chemistry Collections; Wu, X. Feng, Beller, M. Eds.; Springer,
Cham (Switzerland), 2018. c) Scibioh, M. A.; Viswanathan, B.
Carbon Dioxide to Chemicals and Fuels; Elsevier: Amsterdam,
2018. d) Alper, E.; Orhan, O. Y. “CO2 utilization: Developments in
conversion Processes” Petroleum 2017, 3, 109-126. e) Carbon
Dioxide as Chemical Feedstock; Aresta, M. Ed.; Wiley-VCH:
Weinheim, 2010.
3) a) Liu, A. H.; Li, Y. N.; He, L. N. “Organic synthesis using carbon
dioxide as phosgene-free carbonyl reagent” Pure Appl. Chem. 2012,
84, 581-602. b) Jessop, P. G.; Mercer, S. M.; Heldebrant, D. J. “CO2-
triggered switchable solvents, surfactants, and other materials”
Energy Environ. Sci. 2012, 5, 7240. c) Yang, Z. Z.; He, L. N.; Gao, J.;
Liu, A. H.; Yu, B. “Carbon dioxide utilization with C–N bond
formation: carbon dioxide capture and subsequent conversion”
Energy Environ. Sci. 2012, 5, 6602-6639. d) Rochelle, G. T. “Amine
Scrubbing for CO2 Capture” Science, 2009, 325, 1652-1654.
4) a) Francke, R.; Schille, B.; Roemelt, M. “Homogeneously
Catalyzed Electroreduction of Carbon Dioxide-Methods,
Mechanisms, and Catalysts” Chem. Rev. 2018, 118, 4631-4701. b)
Lingampalli, S. R.; Ayyub, M. M.; Rao, C. N. R. “Recent Progress in
the Photocatalytic Reduction of Carbon Dioxide” ACS Omega 2017,
2, 2740-2748. c) Chang, X.; Wang, T.; Gong, J. “CO2 photo-
reduction: insights into CO2 activation and reaction on surfaces of
photocatalysts” Energy Environ. Sci. 2016, 9, 2177-2196. d) White,
J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park,
J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.;
Bocarsly, A. B. “Light-Driven Heterogeneous Reduction of Carbon
Dioxide: Photocatalysts and Photoelectrodes” Chem. Rev. 2015, 115,
12888-12935. e) Goeppert, A.; Czaun, M.; Jones, J. P.; Prakash, G.
K. S.; Olah, G. A. “Recycling of carbon dioxide to methanol and
derived products – closing the loop” Chem. Soc. Rev. 2014, 43, 7995-
8048. f) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and
Gas: The Methanol Economy. 2nd Edition; Wiley-VCH: Weinheim,
2009.
5) a) Cai, R.; Milton, R. D.; Abdellaoui, S.; Park, T.; Patel, J.;
Alkotaini, B.; Minteer, S. D. “Electroenzymatic C − C Bond
Formation from CO2” J. Am. Chem. Soc. 2018, 140, 5041-5044. b)
Luo, J.; Larrosa, I. “C-H Carboxylation of Aromatic Compounds
through CO2 Fixation” ChemSusChem 2017, 10, 3317-3332. c) Kim,
D.; Kley, C. S.; Li, Y.; Yang, P. “Copper nanoparticle ensembles for
selective electroreduction of CO2 to C2–C3 products” Proc. Natl.
Acad. Sci. U. S. A. 2017, 114 (40), 10560−10565. d) Juliá-Hernández,
F.; Moragas, T.; Cornella, J.; Martin, R. “Remote carboxylation of
halogenated aliphatic hydrocarbons with carbon dioxide” Nature
2017, 545, 84-88. e) Mathessen, R.; Fransaer, J.; Binnemans, K.
DeVos, D. E. “Electrocarboxylation: towards sustainable and
efficient synthesis of valuable carboxylic acids” Beil. J. Org. Chem.
2014, 10, 2484-2500. f) Liu, R.; Stephani, C.; Han, J. J.; Tan, K. L.;
Wang, D. “Silicon Nanowires Show Improved Performance as
Photocathode for Catalyzed Carbon Dioxide Photofixation” Angew.
Chem. Int. Ed. 2012, 52, 4225-4228. g) Liu, R.; Yuan, G.; Joe, C. L.;
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Iwasawa, N. “Construction of
a
visible light-driven
hydrocarboxylation cycle of alkenes by the combined use of Rh(I)
and photoredox catalysts” Chem. Commun. 2017, 53, 3098-3101.
7) Villamena, F. A.; Locigno, E. J.; Rockenbauer, A.; Hadad, C.
M.; Zweier, J. L. “Theoretical and Experimental Studies of the Spin
Trapping of Inorganic Radicals by 5,5-Dimethyl-1-Pyrroline N-
Oxide (DMPO). 1. Carbon Dioxide Radical Anion” J. Phys. Chem. A
2006, 110, 13253.13258.
8) Gutsev, G. L.; Bartlett, R. J.; Compton, R. N. “Electron
Affinities of CO2, OCS, and CS2” J. Chem. Phys. 1998, 108, 6756-
6762.
9) Buckingham, A. D.; Disch, R. L.; Dunmur, D. A. “The
Quadrupole Moments of Some Simple Molecules” J. Am. Chem. Soc.
1968, 90, 3104-3107.
10) Wardman, P. “Reduction Potentials of One-Electron Couples
Involving Free Radicals in Aqueous Solution“J. Phys. Chem. Ref.
Data 1989, 18, 1637-1755.
11) a) Janik, I.; Tripathi, G. N. R. “The nature of the CO2-radical
anion in water“ J. Chem. Phys. 2016, 144, 154307/7. b) Flyunt, R.;
Schuchmann, M. N.; vonSonntag, C. “A Common Carbanion
Intermediate in the Recombination and Proton-Catalysed
·-
Disproportionation of the Carboxyl Radical Anion, CO2 , in
Aqueous Solution “ Chem. Eur. J. 2001, 7, 796-799. c) Hayon, E.;
Simic, M. “Acid-Base Properties of Free Radicals in Solution” Acc.
Chem. Res. 1974, 7, 114-121. d) Fojtik, A.; Czapski, G.; Henglein, A.
“Pulse Radiolytic Investigation of the Carboxyl Radical in Aqueous
Solution” J. Phys. Chem. 1970, 74, 3204-3208.
12) Aresta, M.; Angelini, A. “The Carbon Dioxide Molecule and
the Effects of Its Interaction with Electrophiles and Nucleophiles”
Top. Organomet. Chem. 2016, 53, 1-38. DOI: 10.1007/3418_2015_93.
13) a) Lias, S. G.; Liebman, J. F.; Levin, R. D. “Evaluated Gas
Phase Basicities and Proton Affinities of Molecules; Heats of
Formation of Protonated Molecules” J. Phys. Chem. Ref. Data 1984,
13, 695-808. b) Cummings, S.; Hratchian, H. P.; Reed, C. A. “The
Strongest Acid: Protonation of Carbon Dioxide” Angew. Chem. Int.
Ed. 2016, 55, 1382-1386.
14) Murphy, L. J.; Robertson, K. N.; Kemp, R. A.; Tuononen, H.
M.; Clyburne, J. A. C. “Structurally simple complexes of CO2” Chem.
Commun. 2015, 51, 3942-3956.
15) a) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.;
Geerlings, P.; De Proft, F. “Electrophilicity and Nucleophilicity
ACS Paragon Plus Environment