6812
V. Varshney et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6810–6812
Most of the compounds of this series exhibited a range of MIC
0.04–1.56 g/mL some of which are superior as compared to that
of linezolid against Gram-positive bacterial strains. The most po-
also acknowledge the SAIF division, CDRI for providing spectro-
scopic data and thankful to Dr. Brijesh K. Srivastava of Zydus Cadil-
a, Ahmedabad, India for the gift sample of linezolid.
l
tent compound of the series was 3f , displaying MIC range between
0.04 and 0.39
(0.78–3.12 g/mL) and vancomycin (0.19–6.25
pound 3f was found to have better activity against Enterococcus
faecalis (MIC value: 0.04 g /mL) than against Streptococcus pyoge-
nes (MIC value 0.09 g/mL).
l
g/mL which was lower than MIC value of linezolid
Supplementary data
l
lg/mL). The com-
l
Supplementary data associated with this article can be found, in
l
Compound 3a was found either equipotent or more potent than
compound 3b against all strains examined in this study. It is obvi-
ous from this data that electronegative substitution at para posi-
tion decreased activity against S. aureus (ATCC 70069 and ATCC
29213). This observation was confirmed by the similar trend ob-
served in the MIC values of compound 3f and 3g. Compound 3f
References and notes
1. Jacoby, G.; Bush, K. In Frontiers in Antimicrobial Resistance: a Tribute to Sturt B.
Levy; White, D. G., Alekshun, M. N., McDermott, P. F., Eds.; ASM Press:
Washington, DC, 2005; pp 53–65. Chapter 5.
(R1 = 4-CH3Ph) exhibited MIC range 0.04–0.19
er than the MICs of compound 3g (R1 = 4-CF3Ph) 0.19–1.56
l
g/mL which is low-
g/mL.
2. Linden, P. K. Drugs 2002, 62, 425.
3. (a) Slee, A. M.; Wuonola, M. A.; McRipley, R. J.; Zajac, I.; Zawada, M. J.;
Bartholomew, P. T.; Gregory, W. A.; Forbes, M. Antimicrob. Agents Chemother.
1987, 31, 1791; (b) Gregory, W. A.; Brittelli, D. R.; Wang, C. L.; Wuonola, M. A.;
McRipley, R. J.; Eustice, D. C.; Eberly, V. S.; Bartholomew, P. T.; Slee, A. M.;
Forbes, M. J. Med. Chem. 1989, 32, 1673.
l
Compound 3d (R1 = 3,4-difluorophenyl) was either equipotent
or less potent than compound 3b (R1 = 4-fluorophenyl). The ob-
served data indicated that mono substituted phenyl ring was fa-
vored over disubstituted phenyl ring. Compound 3e (R1 = 2,3,4-
trichlorophenyl) was found to be devoid of any activity. From this
observation it may be concluded that incorporation of ortho substi-
tuent is detrimental for the anti-bacterial activity.
4. Barrett, J. F. Curr. Opin. Invest. Drugs 2000, 1, 181.
5. Senior, K. Lancet 2000, 355, 1523.
6. (a) Samuel, M. M.; Agarwal, S. K. 43rd Interscience Conference on Antimicrob.
Agents and Chemother., 2003, Chicago, poster F-2103;; (b) Sathish, K. D.;
Swaminathan, S. R.; Selwyn, W.; Velmurugan, R.; Solanki, S. S.; Badiger, S.;
Kapoor, A. K.; Guha, M. K.; Agarwal, S. K.; Samuel, M. M. 44th Interscience
Conference on Antimicrob. Agents and Chemother., 2004; Washington, DC,
poster F-1411.; (c) Solanki, S. S.; Kumar, D. S.; Velmurugan, R.; Samuel, M. M.;
Mathiyazhagan, K.; Singh, G.; Pandey, S.; Srinivas, A. S. S. V.; Agarwal, S. K.;
Guha, M. K. 44th Interscience Conference on Antimicrob. Agents and
Chemother., 2004; Washington, DC, poster F-1412.
7. (a) Shinabarger, D. Exp. Opin. Invest. Drugs 1999, 8, 1195; (b) Kloss, P.; Xiong, L.;
Shinabarger, D. L.; Mankin, A. S. J. Mol. Biol. 1999, 294, 93; (c) Shinabarger, D. L.;
Marotti, K. R.; Murray, R. W.; Lin, A. H.; Melchior, E. P.; Swaney, S. M.; Dunyak,
D. S.; Demyan, W. F.; Buysse, J. M. Antimicrob. Agents Chemother. 1997, 41, 2132;
(d) Lin, A. H.; Murray, R. W.; Vidmar, T. J.; Marotti, K. R. Antimicrob. Agents
Chemother. 1997, 41, 2127; (e) Colca, J. R.; McDonald, W. G.; Waldon, D. J.;
Thomasco, L. M.; Gadwood, R. C.; Lund, E. T.; Cavey, G. S.; Mathews, W. R.;
Adams, L. D.; Cecil, E. T.; Pearson, J. D.; Bock, J. H.; Mott, J. E.; Shinabarger, D. L.;
Xiong, L.; Mankin, A. S. J. Biol. Chem. 2003, 278, 21972; (f) Diekema, D. J.; Jones,
R. N. Drugs 2000, 59, 7.
Among heterocyclic compounds, the thiophenyl analogues 3i
and 3j with MIC range of 0.39–1.56 lg/mL were more potent than
linezolid against all strains screened. Compound 3i (2-thiophenyl)
derivative was superior to its regioisomer 3j (3-thiophenyl) against
all bacterial strains screened except S. aureus ATCC 25923. Com-
pound 3i was found to be more potent than 3j against this strain
with MIC value at 0.39 lg/m. Compound 3h (furanyl) exhibited
MICs in same range 0.39–3.12 that of linezolid against S. aureus
(ATCC 29213 and ATCC 70069) and was found to be more potent
than linezolid against rest of the bacterial strains examined.
Compound 3f was the only compound in the series which was
more potent than vancomycin against all strains except Bacillus
cereus. All compounds except 3g were either equipotent or less po-
tent than vancomycin against E. faecalis and S. pyogenes. All com-
pounds except 3e exhibited lower MIC than vancomycin against
S. aureus ATCC 70069 strain. On the contrary, all compounds except
3b, 3c and 3f showed higher MIC than vancomycin againstS. aureus
ATCC 29213 strain.
8. (a) Gonazels, R. D.; Schreckenberger, P. C.; Grahan, M. B.; Kelkar, S.; DenBesten,
K.; Quinn, J. P. Lancet 2001, 357, 1179; (b) Tsiodras, S.; Gold, H. S.; Sakoluas, G.;
Eliopoulos, G. M.; Wennersten, C.; Venkataraman, L.; Modellering, R. C., Jr.;
Ferraro, M. J. Lancet 2001, 358, 207.
9. (a) Pae, A. N.; Kim, H. Y.; Joo, H. J.; Kim, B. H.; Cho, Y. S.; Choi, K. I.; Choi, J. H.;
Koh, H. Y. Bioorg. Med. Chem. Lett. 1999, 9, 2679; (b) Cui, Y.; Yang, Y.; Chen, K.; Ji,
R.; Zhang, S. Bioorg. Med. Chem. Lett. 2003, 13, 2311; (c) Yu, D.; Huiyuan, G.
Bioorg. Med. Chem. Lett. 2002, 12, 857; (d) Lohray, B. B.; Lohray, V. B.; Srivastava,
B. K.; Gupta, S.; Solanki, M.; Kapadnis, P.; Takale, V.; Pandya, P. Bioorg. Med.
Chem. Lett. 2004, 14, 3139; (e) Srivastava, B. K.; Kapadnis, P. B.; Pandya, P.;
Lohray, V. B. Eur. J. Med. Chem. 2004, 39, 989; (f) Lee, J. S.; Cho, Y. S.; Chang, M.
H.; Koh, H. Y.; Chung, B. Y.; Pae, A. N. Bioorg. Med. Chem. Lett. 2003, 13, 4117.
10. (a) Sztanke, K.; Pasternak, K.; Sztanke, M. Ann. Univ. Marie Curie SKlodowska
2004, 59, 535; (b) Phillips, O. A. Curr. Opin. Invest. Drugs 2005, 6, 768; (c)
Gravestock, M. B. Curr. Opin. Drug Discovery Dev. 2005, 8, 469; (d) Bozdogan, B.;
Appelbaum, P. C. Int. J. Antimicrb. Agents 2004, 23, 113; (e) Hutchinson, D. K.
Curr. Top. Med. Chem. 2003, 3, 021; (f) Nilius, A. M. Curr. Opin. Invest. Drug 2003,
4, 149.
11. (a) Takhi, M.; Singh, G.; Murugan, C.; Thaplyyal, N.; Maitra, S.; Bhaskarreddy, K.
M.; Amarnath, P. V. S.; Mallik, A.; Harisudan, T.; Trivedi, R. K.; Sreenivas, K.;
Selvakumar, N.; Iqbal, J. Bioorg. Med. Chem. Lett. 2008, 18, 5150; (b) Mehta, A.;
Arora, S. K.; Das, B.; Ray, A.; Rudra, S.; Rattan, A. U.S. Patent 6,956,040, 2005.;
(c) Mehta, A.; Rudra, S.; Raja Rao, A. V. S.; Rattan, A.; Yadav, A. S. U.S. Patent
Appl. 029,330,7, 2006.; (d) Mehta, A.; Arora, S. K.; Das, B.; Ray, A; Rudra, S.;
Rattan, A. U.S. Patent : 673,430,7, 2004.
12. (a) Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.; Maninen, P. R.;
Ulanowicz, D. A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops, D. S.; Ford,
C. W.; Zurenko, G. E. J. Med. Chem. 1996, 39, 673; (b) Stecher, E. D.; Ryder, H. F. J.
Am. Chem. Soc. 1952, 74, 4392.
13. The physical and spectral data of all synthesized compounds are presented as
Supplementary data.
14. (a) Phillips, O. A.; Udo, E. E.; Ali, M. A. A.; Al-Hassawi, N. Bioorg. Med. Chem.
2003, 11, 35; (b) Tokuyama, R.; Takahashi, Y.; Tomita, Y.; Tsubouchi, M.;
Yoshida, T.; Iwasaki, N.; Kado, N.; Okezaki, E.; Nagata, O. Chem. Pharm. Bull.
2001, 49, 353; (c) Tokuyama, R.; Takahashi, Y.; Tomita, Y.; Tsubouchi, M.;
Iwasaki, N.; Kado, N.; Okezaki, E.; Nagata, O. Chem. Pharm. Bull. 2001, 49, 361.
15. C log P values were computed by using CS ChemDraw Ultra ver. 7.0 by
Cambridge Soft. Com, MA, USA.
Earlier several groups attempted14 to correlate biological activ-
ities with C log P. We also attempted for the same but failed to
establish any significant correlation. The C log P value15 of the com-
pounds in this series was in the range 0.10–2.824 showing variable
MIC values against strains evaluated. Instead of having same
C log P value at 0.571, the compounds 3i and 3j exhibited different
MIC values against bacterial strains screened. Thus no correlation
of computed C log P of the compounds with their respective MIC
values could be established. This clearly indicates that lipophilicity
of compounds is not critical factor responsible for their antibacte-
rial activity. Other factors like steric and electronic might be
responsible for the variation in antibacterial activity.
In conclusion, a novel series of oxazolidinone analogues were
synthesized exhibiting excellent in vitro activity against several
Gram–positive resistant strains. The best compound of the series
is 3f more potent than linezolid as well as vancomycin against
all bacterial strains evaluated. Further lead optimisation in the ser-
ies is in progress.
Acknowledgements
We are thankful to the Director, CDRI, Lucknow, India for con-
stant encouragement of the drug development programme. We