(Diphosphane monosulfide)platinum() Complexes for Hydroformylation Reactions
FULL PAPER
2
(101 MHz, CDCl3, 298 K): δ = –12.8 (t, JC,P = 6, 1JC,Pt = 659 Hz,
CH3), 18.2 (s, CH2), 26.7 (m CH2–P), 33.5 (m, CH2PS), 128.2–
133.7 (Carom) ppm. 31P{1H} NMR (162 MHz, CDCl3, 298 K): δ =
[14] J. F. Cámer, A. Aaliti, N. Ruiz, A. M. M. Bultó, C. Claver, C. J.
Cardin, J. Organomet. Chem. 1997, 530, 199–209.
[15] L. Dahlenburg, S. Mertel, J. Organomet. Chem. 2001, 630, 221–
243.
[16] M. Gómez, G. Muller, D. Sainz, J. Sales, X. Solans, Organome-
tallics 1991, 10, 4036–4045.
[17] G. Cavinato, G. De Munno, M. Lami, M. Marchionna, L.
Toniolo, D. Viterbo, J. Organomet. Chem. 1994, 466, 277–282.
[18] I. Tóth, T. Kégl, C. J. Elsevier, L. Kollár, Inorg. Chem. 1994,
33, 5708–5712.
41.9 (s, Ph2PS), 21.5 (s, JP,Pt = 3050 Hz, Ph2P) ppm. 195Pt{1H}
NMR (86 MHz, CDCl3, 298 K): δ = –4578.4 ppm (t, JPt,P
1
1
=
3059 Hz) ppm.
Hydroformylation Experiments: In a typical experiment using pre-
formed catalysts, a solution of the platinum complex (0.058 mmol),
1-octene (5.8 mmol) and SnCl2·2H2O (0.29 mmol) in 5.8 mL of
methyl isobutyl ketone was transferred under nitrogen into a 50-
mL stainless steel autoclave. The reaction vessel was pressurised to
50 bar total pressure (CO/H2 = 1:1) and the magnetically stirred
mixture was heated to 353 K in a thermostated apparatus. The re-
action was monitored by following the drop in pressure.
[19] T. Kégl, L. Kollár, L. Radics, Inorg. Chim. Acta 1997, 265, 249–
254.
[20] G. K. Anderson, H. C. Clark, J. A. Davies, Inorg. Chem. 1983,
22, 427–433.
[21] H. J. Ruegg, P. S. Pregosin, A. Scrivanti, L. Toniolo, C. Bot-
teghi, J. Organomet. Chem. 1986, 316, 233–241.
[22] Y. Kawabata, T. Hayashi, I. Ogata, J. Chem. Soc., Chem. Com-
mun. 1979, 462–463.
For the “in situ” procedure, the ligand, dissolved when possible in
about 1.5 mL of methyl isobutyl ketone, was added to a solution
of the platinum precursor in about 1.5 mL of methyl isobutyl
ketone and the mixture was kept under vigorous stirring for 30 min.
After this time SnCl2·2H2O, 1-octene and methyl isobutyl ketone
(up to 5.8 mL of solvent) were added to the solution. The pressure
was monitored throughout the reaction. After cooling and venting
of the gas, the pale-yellow solution was immediately analysed by
GLC. Conversion of 1-octene and yield of aldehydes were calcu-
lated using dodecane as internal standard.
[23] A. Scrivanti, C. Botteghi, L. Toniolo, A. Berton, J. Organomet.
Chem. 1988, 344, 261–275.
[24] G. P. C. M. Dekker, A. Buijs, C. J. Elsevier, K. Vrieze,
P. W. N. M. van Leeuwen, W. J. J. Smeets, A. L. Spek, Y. F.
Wang, C. H. Stam, Organometallics 1992, 11, 1937–1948.
[25] S. O. Grim, J. D. Mitchell, Inorg. Chem. 1977, 16, 1762–1770.
[26] R. Colton, J. Ebner, B. F. Hoskins, Inorg. Chem. 1988, 27,
1993–1999.
[27] J. Browning, G. W. Bushnell, K. R. Dixon, R. W. Hilts, J. Or-
ganomet. Chem. 1993, 452, 205–218.
[28] T. C. Blagborough, R. Davis, P. Ivison, J. Organomet. Chem.
1994, 467, 85–94.
HP-NMR Experiments: In a typical experiment, a solution of
0.058 mmol of the desired Pt complex, together with the specified
amounts of SnCl2 and 1-octene (Table 2) in [D6]acetone (6 mL)
were injected into the HP-NMR bubble column reactor against a
counter stream of N2, CO or syngas, as appropriate. The reactor
was sealed, pressurised, and heated to the desired temperature
(Table 2), upon which the 31P{1H} NMR spectrum of the sample
was recorded.
[29] S. M. Aucott, A. M. Z. Slawin, J. D. Woollins, Eur. J. Inorg.
Chem. 2002, 2408–2418.
[30] S. M. Aucott, A. M. Z. Slawin, J. D. Woollins, Polyhedron 2003,
22, 361–368.
[31] D. E. Berry, J. Browning, K. R. Dixon, R. W. Hilts, Can. J.
Chem. 1988, 66, 1272–1282.
[32] J. R. Dilworth, N. Wheatley, Coord. Chem. Rev. 2000, 199, 89–
158.
[33] R. Romeo, L. Monsù Scolaro, M. R. A. Plutino, F. N. Romeo,
A. Del Zotto, Eur. J. Inorg. Chem. 2002, 629–638.
[34] I. Brassat, U. Englert, W. Keim, D. Keitel, S. Killat, G. P. Sur-
anna, R. Wang, Inorg. Chim. Acta 1998, 280, 150–162.
[35] I. Brassat, W. Keim, S. Killat, M. Moethrath, P. Mastrorilli,
C. F. Nobile, G. P. Suranna, J. Mol. Catal. A 2000, 157, 41–58.
[36] G. P. Suranna, P. Mastrorilli, C. F. Nobile, W. Keim, Inorg.
Chim. Acta 2000, 305, 151–156.
Acknowledgments
We thank Dr. G. Ciccarella for LC/MS measurements. The Italian
MURST (PRIN 2004 project, prot. 2004030719) and COSTD30
(fellowship for STSM to A. L.) are gratefully acknowledged for
financial support.
[37] P. Mastrorilli, C. F. Nobile, G. P. Suranna, F. P. Fanizzi, G. Cic-
carella, U. Englert, Q. Li, Eur. J. Inorg. Chem. 2004, 1234–1242.
[38] M. J. Baker, M. F. Giles, A. Guy, M. J. Taylor, R. J. Watt, J.
Chem. Soc., Chem. Commun. 1995, 197–198.
[39] L. Gonsalvi, H. Adams, G. J. Sunley, E. Ditzel, A. Haynes, J.
Am. Chem. Soc. 2002, 124, 13597–13612.
[1] G. W. Parshall, S. D. Ittel, Homogeneous Catalysis, 2nd edition,
Wiley Interscience, 1992, p. 106.
[2] G. Petöcz, Z. Berente, T. Kégl, L. Kollár, J. Organomet. Chem.
2004, 689, 1188–1193.
[3] G. W. Parshall, J. Am. Chem. Soc. 1972, 94, 8716–8719.
[4] C. Y. Hsu, M. Orchin, J. Am. Chem. Soc. 1975, 97, 3553.
[5] I. Schwager, J. F. Knifton, J. Catal. 1976, 45, 256–267.
[6] P. Meessen, D. Vogt, W. Keim, J. Organomet. Chem. 1998, 551,
165–170.
[7] L. A. Van der Veen, P. K. Keeven, P. C. J. Kamer, P. W. N. M.
van Leeuwen, J. Chem. Soc., Dalton Trans. 2000, 2105–2112.
[8] P. Haelg, G. Consiglio, P. Pino, J. Organomet. Chem. 1985, 296,
281–290.
[40] S. Gladiali, E. Alberico, S. Pulacchini, L. Kollár, J. Mol. Catal.
A 1999, 143, 155–162.
[41]
D. D. Ellis, G. Harrison, A. G. Orpen, P. Hirihattaya, P. G.
Pringle, J. G. de Vries, H. Oevering, J. Chem. Soc., Dalton
Trans. 2000, 671–675.
[42]
[43]
[44]
[45]
[46]
T. Hayashi, Y. Kawabata, T. Isoyama, I. Ogata, Bull. Chem.
Soc. Jpn. 1981, 54, 3438–3446.
As expected, no Pt black formed in the reaction carried out
with complex 6, in which the Pt atom is bound to two P atoms.
F. Ancillotti, M. Lami, M. Marchionna, J. Mol. Catal. 1990,
58, 331–344.
J. A. Iggo, D. Shirley, N. C. Tong, New J. Chem. 1998, 22,
1043–1045.
Over this temperature range the combination of broadening of
the 119Sn signal and its inherent weakness presumably pre-
cludes its observation.
[9] G. Parrinello, J. K. Stille, J. Am. Chem. Soc. 1987, 109, 7122–
7127.
[10] G. Consiglio, S. C. A. Nefkens, A. Borer, Organometallics 1991,
10, 2046–2051.
[11] S. Gladiali, D. Fabbri, L. Kollár, J. Organomet. Chem. 1995,
491, 91–96.
[12] A. Scrivanti, S. Zeggio, V. Beghetto, U. Matteoli, J. Mol. Catal.
A 1995, 101, 217–220.
[13] A. Scrivanti, V. Beghetto, A. Bastianini, U. Matteoli, G. Men-
chi, Organometallics 1996, 15, 4687–4694.
[47]
It is known that solvated SnCl2 can act as a donor ligand to-
ward transition metals. See, for instance: F. A. Cotton, G. Wil-
Eur. J. Inorg. Chem. 2006, 2268–2276
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
2275