AD-mix b and 99.5% from AD-mix a. Unfortunately, we were not
able to separate 8a and 8b using any column available to us, though
the similar measured rotations show clearly that these products are
not racemic and that the ee’s are similar to those obtained for the
separated isomers.
and the EPSRC (GR/R96835, fellowship to CA). We also wish to
thank Mr M Lee for assistance with the chiral HPLC.
Notes and references
‡ Crystallographic data for 7b: C17H22F2O4, crystal size 0.33 3 0.21 3 0.14
mm, M = 328.15, orthorhombic, a = 9.7774(6), b = 11.6322(7), c =
14.7974(9) Å, a = 90, b = 90, g = 90 °, U = 1682.95(18) Å3, T = 150(2)
K, space group P2(1)2(1)2(1), Z = 4, m(Mo–Ka) = 0.105 mm21
reflections measured, 2966 unique (Rint = 0.0260) which were used in all
calculations). Final R indices [F2 > 2s(F2) R1 = 0.0298, wR2 = 0.0728;
R indices (all data) R1 = 0.0315, wR2 = 0.0735.
Oxidative cleavage of the phenyl ring has been reported in the
presence of an acetonide protecting group.16 We attempted the
oxidation, believing that the presence of the CF2 centre would make
acetal cleavage more difficult by suppressing the pre-equilibrium
protonation at the beginning of the hydrolysis pathway. However,
a complex mixture of products was obtained from which we
identified desired product 9, along with 10 and 11. Given the
measured pH of 2.9 at the start of the reaction, acetal hydrolysis is
not surprising, so the literature observation is remarkable.
Methanolysis of the bis-acetonide 7a and per-acetylation to 12¶§
set the stage for successful oxidative cleavage and 13 was isolated
after work-up with TMS diazomethane (42% over 2 steps). No
epimerisation was detected by GC or 19F NMR. Exposure to
catalytic K2CO3 in methanol delivered a product with the mass
(revealed by ES-MS) and NMR spectra of aldonic acid 14.∑ HMBC
analysis was used to confirm the acyclic structure.
, 11573
b405067c/ for crystallographic data in .cif or other electronic format.
¶ A crystal structure confirmed the stereochemistry was unchanged.
Crystallographic data for 12: C19H22F2O8, crystal size 0.36 3 0.19 3 0.06
mm, M = 416.37, monoclinic, a = 11.5206(15), b = 5.7277(7), c =
15.792(2) Å, a = 90, b = 107.137(2), g = 90 °, U = 995.8(2) Å3, T =
150(2) K, space group P2(1), Z = 2, m(Mo–Ka) = 0.120 mm21, 7293
reflections measured, 3466 unique (Rint = 0.0257) which were used in all
calculations). Final R indices [F2 > 2s(F2) R1 = 0.0413, wR2 = 0.0877;
R indices (all data) R1 = 0.0484, wR2 = 0.0910.
∑ Data for 14. Semi solid, dH (D2O, 500 MHz) 4.35–4.25 (2H, m, H-2, H-3),
3
2
4.10–4.01 (1H, m [app. d, JH–F 20.7], H-5), 3.85 (1H, broad d, , H6a, J
14.1), 3.68 (1H, dd, H6b, J 8.4, 2J 14.1); dC (D2O, 125 MHz) : 180.6 (C-1),
124.6 (t, 1JC–F 212.5, C-4), 72.7 (C-2), 72.5 (dd, 2JC–F 19.1, 14.4, C-3), 72.1
(dd, 2JC–F 33.6, 28.1, C-5), 62.8 (C-6); dF (D2O, 282 MHz) 2121.7 (1F, dd,
We have described the first total synthesis of a difluorosugar
which gives rise to highly enantiomerically-enriched products. The
method is direct and stereodivergent, assuming the other three
diastereoisomers can be treated in the same way and breaks new
ground in the stereoselective synthesis of difluoroanalogues of
natural products.
2JF–F 260.0, JH–F 19.4), 2123.3 (1F, dd, JF–F 260.0, JH–F 20.7); m/z
3
2
3
(ES2) 215 (M 2 H+, 100%).
1 K. Dax, M. Albert, J. Ortner and B. J. Paul, Carbohydr. Res., 2000, 327,
47; R. P. Singh and J. M. Shreeve, Synthesis, 2002, 2561.
2 See for example: P. V. Ramachandran, B. Q. Gong, A. V. Teodorovic
and H. C. Brown, Tetrahedron: Asymmetry, 1994, 5, 1061; H. Abe, H.
Amii and K. Uneyama, Org. Lett., 2001, 3, 313.
We wish to thank the EPSRC (GR/K84882) and the Universities
of Leicester and Birmingham and GSK (CASE studentship to SP)
3 C. Audouard, J. Fawcett, G. A. Griffith, J. M. Percy, S. Pintat and C. A.
Smith, Org. Biomol. Chem., 2004, 2, 528.
4 H. W. Chen, Z. B. Zhao, T. M. Hallis, Z. H. Guo and H. W. Liu, Angew.
Chem. Int. Ed., 2001, 40, 607.
5 C. Kim, J. Haddad, S. B. Vakulenko, S. O. Meroueh, Y. Wu, H. Yan and
S. Mobashery, Biochemistry, 2004, 43, 2373.
6 P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org.
Chem., 1981, 46, 3936.For applications of this methodology, see F.
Matsuura, Y. Hamada and T. Shiori, Tetrahedron, 1993, 49, 8211; J.
Clayden, F. E. Knowles and C. J. Menet, Tetrahedron Lett., 2003, 44,
3397; T. S. Cooper, P. Laurent, C. J. Moody and A. K. Takle, Org.
Biomol. Chem., 2004, 2, 265.For a review, see L. N. Mander and C. M.
Williams, Tetrahedron, 2003, 59, 1105.
7 K. P. M. Vanhessche and K. B. Sharpless, Chem. Eur. J., 1997, 3, 517;
F. A. Davis, P. V. N. Kasu, G. Sundarababu and H. Qi, J. Org. Chem.,
1997, 62, 7546.
8 D. W. Nelson, A. Gypser, P. T. Ho, H. C. Kolb, T. Kondo, H. L. Kwong,
D. V. McGrath, A. E. Rubin, P. O. Norrby, K. P. Gable and K. B.
Sharpless, J. Am. Chem. Soc., 1997, 119, 1840.
Scheme 3 Stereoselective reduction and dihydroxylation reactions. Rea-
gents and conditions. i, 5% Hg(OAc)2/NaI/Zn, THF; ii, Red-Al, PhMe, rt;
iii, acetone, TsOH, CuSO4; iv, MeSO2NH2 and AD mix-b for 7a; v,
MeSO2NH2 and AD mix-a for 7b; vi, flash column chromatography.
9 Y. Hanzawa, K. Inazawa, A. Kon, H. Aoki and Y. Kobayashi,
Tetrahedron Lett., 1987, 28, 659.
10 T. S. Chou, P. C. Heath, L. E. Patterson, L. M. Poteet, R. E. Lakin and
A. H. Hunt, Synthesis, 1992, 565.
11 (a) Z. G. Wang and G. B. Hammond, Chem. Commun., 1999, 2545; (b)
Z. G. Wang and G. B. Hammond, J. Org. Chem., 2000, 65, 6547; (c) Z.
G. Wang and G. B. Hammond, Tetrahedron Lett., 2000, 41, 2339; (d) Q.
L. Shen and G. B. Hammond, J. Am. Chem. Soc., 2002, 124, 6534.
12 I. Rico, D. Cantacuzene and C. Wakselman, J. Chem. Soc., Perkin
Trans. 1, 1982, 1063.
13 T. Yamazaki, K. Mizutani and T. Kitazume, J. Org. Chem., 1995, 60,
6046.
14 G. M. Mehltretter, C. Dobler, U. Sundermeier and M. Beller,
Tetrahedron Lett., 2000, 41, 8083.
15 M. Kuroboshi and T. Ishihara, Bull. Chem. Soc. Jpn., 1990, 63, 1185.
16 T. Yokomatsu, Y. Yoshida, K. Suemune, T. Yamagishi and S. Shibuya,
Tetrahedron: Asymmetry, 1995, 6, 365.
Scheme 4 Elaboration of the protected AD products. i, RuCl3, NaIO4,
MeCN/CCl4/H2O, rt; ii, TMSCHN2, THF; iii, Amberlyst-15, MeOH, 40 °C,
24 hours, 75%; iv, Ac2O, pyridine, rt, 24 hours, 96%; v, 10% K2CO3,
MeOH, 0 °C.
C h e m . C o m m u n . , 2 0 0 4 , 1 5 2 6 – 1 5 2 7
1527