Angewandte
Chemie
Table 1: Synthesis of b-C-trisaccharides by double RCM.[a]
The above results show that our double
Entry
Diester 3
C-Trisaccharide 6[b]
RCM approach for C-trisaccharide synthesis is
viable and efficient. Application of this meth-
odology to other congeners is currently under-
way and will be reported in due course.
1
Received: December 8, 2003
Revised: March 8, 2004 [Z53478]
3a: 89%
6a: 49%
Keywords: carbohydrates · cyclization ·
.
ring-closing metathesis · synthesis design ·
trisaccharides
2
[1] For reviews on C-glycoside synthesis, see: a) Y.
Du, R. J. Linhardt, I. R. Vlahov, Tetrahedron
1998, 54, 9913 – 9959; b) J.-M. Beau, T. Gal-
lagher, Top. Curr. Chem. 1997, 187, 1 – 54; c) F.
Nicotra, Top. Curr. Chem. 1997, 187, 55 – 83.
[2] C. Bertozzi, M. Bednarski in Modern Methods
in Carbohydrate Synthesis (Eds.: S. H. Khan,
R. A. O. O'Neil), Harwood Academic Publish-
ers, Amsterdam, 1996, pp. 316 – 351.
[3] a) A. Wei, A. Haudrechy, C. Audin, H.-S. Jun,
N. Haudrechy-Bretel, Y. Kishi, J. Org. Chem.
1995, 60, 2160 – 2169; b) J. L. Asensio, J. F.
Espinosa, H. Dietrich, F. J. Caæada, R. R.
Schmidt, M. Martín-Lomas, S. AndrØ, H.-J.
Gabius, J. JimØnez-Barbero, J. Am. Chem. Soc.
1999, 121, 8995 – 9000; c) G. Rubinstenn, P.
Sinay¨, P. Berthault, J. Phys. Chem. A 1997,
101, 2536 – 2540, and references therein.
3b: 84%
6b: 55%
3
4
5
3c: 74%
6c: 57%
3d: 88%
6d: 59%
[4] a) M. H. D. Postema, C-Glycoside Synthesis,
CRC Press, Boca Raton, 1995; b) D. E. Levy,
C. Tang, The Chemistry of C-Glycosides,
Vol. 13, Elsevier Science, Oxford, 1995.
[5] For a review of C-saccharide synthesis, see: M.
McKee, L. Liu, M. H. D. Postema, Curr. Org.
Chem. 2001, 5, 1133 – 1167.
3e: 48%[c]
6e: 33%[d]
[6] T. Haneda, P. G. Goekjian, S. H. Kim, Y. Kishi,
J. Org. Chem. 1992, 57, 490 – 498.
6
7
[7] For some recent synthetic approaches to C-
trisaccharides, see: a) A. Dondoni, A. Marra,
Tetrahedron Lett. 2003, 44, 4067 – 4071; b) L. M.
Mikkelsen, S. L. Krintel, J. JimØnez-Barbero, T.
Skrydstrup, J. Org. Chem. 2002, 67, 6297 – 6308;
c) D. P. Sutherlin, R. W. Armstrong, J. Org.
Chem. 1997, 62, 5267 – 5283; d) D. P. Sutherlin,
R. W. Armstrong, J. Am. Chem. Soc. 1996, 118,
9802 – 9803.
[8] M. H. D. Postema, D. Calimente, L. Liu, T. L.
Behrmann, J. Org. Chem. 2000, 65, 6061 – 6068.
[9] M. H. D. Postema, J. L. Piper, L. Liu, J. Shen, M.
Faust, P. Andreana, J. Org. Chem. 2003, 68,
4748 – 4754.
3 f: 88%
6 f: 50%
3g: 87%
6g: 53%
8
[10] For a review on the use of olefin metathesis in
carbohydrate chemistry, see: M. Jørgensen, P.
Hadwiger, R. Madsen, A. E. Stütz, T. M. Wrod-
nigg, Curr. Org. Chem. 2000, 4, 565 – 588.
3h: 76%
6h: 57%[e]
[a] Yields refer to chromatographically homogeneous material. Yields are for three steps:
methylenation, RCM (35–40 mol% of 17), and hydroboration/oxidative workup. [b] Stereo- [11] M. H. D. Postema, J. L. Piper, Org. Lett. 2003, 5,
chemistry at the C1 and C2 positions was determined by acetylation and analysis of the H2
coupling constant in the HNMR spectra. [c] A fair amount of recovered mono-1,6-ester
was isolated from the reaction mixture. [d] In this case, the RCM reaction was stopped early
and the bis-C-glycal was isolated, purified (48%, unoptimized), and then subjected to
hydroboration (66%, unoptimized). [e] In this case, the yield is for two steps (methylen-
ation and RCM) since hydroboration gave an inseparable mixture of two isomers.
1721 – 1723.
1
[12] For examples of double RCM reactions, see:
a) R. H. Grubbs, G. C. Fu, J. Am. Chem. Soc.
1992, 114, 7324 – 7325; b) D. J. Wallace, P. G.
Bulger, D. J. Kennedy, M. S. Ashwood, I. F.
Cottrell, U.-H. Dolling, Synlett 2001, 3, 357 –
Angew. Chem. Int. Ed. 2004, 43, 2915 –2918
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2917