Supramolecular Chemistry
3
E
O
CO2R'
E
R
NH2
+
CS2
+
N
S
R
β–CD
H2O
S
H2O
OH
–R'OH
H2O
HO
OH
OH
H2O
H2O
H2O
H2O
O
HO
O
O
O
O
O
HO
O
HO
O
O
HO
H2O
OH
OH HO
OH
HO
OH
OH
OH
OH
O
HO
O
H2O
O
O
OH
H2O
O
H2O
O
OH
HO
O
HO
O
OH
HO
S
HO
O
OH
S
RNH2
O
OH
O
R
O
E
S
HO
O
OH
CS2
N
H
S H
NHR
HO
O
OH
HO
HO
O
OH
HO
H2O
HO
E
E
+
OH
O
OH
OH
O
E
E
O
H2O
R'O
H2O
O
HO
H2O
HO
H2O
OH
HO
OH
HO
HO
OH
O
O
OH
O
HO
O
HO
O
O
O
O
O
OH
O
OH
O
HO
O
OH
HO
HO
H2O
HO
HO
H2O
H2O
H2O
O
HO
HO
H2O
H2O
O
O
OH
OH
OH
Scheme 2. (Colour online) Proposed mechanism for synthesis of rhodanines in the presence of CD supramolecule.
General procedure for synthesis of rhodanine derivatives
by simple mixing of the starting materials during 15 min
the products can be separated by simple extraction.
The amine derivative (2 mmol) and carbon disulphide
(2 mmol) were added to a solution of b-CD (10 mol%) in
H2O (5 ml) and the mixture was stirred at room temperature
for 30 s. Then 2 mmol of activated acetylene was added to
the mixture dropwise and then the mixture stirred to
appropriate time (Table 2). After completion (TLC), the
reaction mixture was extracted with CH2Cl2 (4 £ 10 ml)
and dried over anhydrous MgSO4 and evaporated to give
the rhodanine. All the products were previously reported (6)
and were characterised by direct comparison of their IR and
physical data.
References
(1) Singh, S.P.; Parmar, S.S.; Raman, K.; Stenberg, V.I. Chem.
Rev. 1981, 81, 175–203.
(2) Brown, F.C. Chem. Rev. 1961, 61, 463–521.
(3) Lesyk, R.B.; Zimenkovsky, B.S. Curr. Org. Chem. 2004, 8,
1547–1577.
(4) Tomasic, T.; Masic, L.P. Curr. Med. Chem. 2009, 16,
1596–1629.
(5) Mendgen, T.; Steuer, C.; Klein, C.D. J. Med. Chem. 2012,
55, 743–753.
(6) (a) Alizadeh, A.; Rostamnia, S.; Zohreh, N.; Hosseinpour,
R. Tetrahedron Lett. 2009, 50, 1533–1535; (b) Rostamnia
S. C.R. Chim. 2013, 16, 1042–1046; (c) Rostamnia,
S. Investigation of the Novel Multicomponent Reactions
Based on Binucleophilic Systems and Zwitterions. Ph.D.
Dissertation, Tarbiat Modares University, Tehran, Iran,
2010.
Ethyl 2-[3-((4-chlorophenyl)methyl)-4-oxo-2-thioxo-1,3-
thiazolan-5-yliden]ethanoate (3b)
Orange powder, m.p. 114–1188C. IR (KBr) (nmax, cm21):
1
1728 (CvO), 1649 (CvC), 1310 and 1177 (CvS); H
NMR (500.1 MHz, CDCl3): dH ¼ 3.87 (3H, s, OMe), 5.24
(7) For some reviews see (a) Singh, S.P.; Parmar, S.S.; Raman,
K.; Stenberg, V.I. Chem. Rev. 1981, 81, 175–203; (b)
Brown, F.C. Chem. Rev. 1961, 61, 463-521.
(8) Asahara, H.; Kida, T.; Hinoue, T.; Akashi, M. Tetrahedron
2013, 69, 9428–9433.
(2H, s, CH2Ph), 6.84 (1H, s, CvCH), 7.28 (2H, d,
3
3JHH ¼ 8.4 Hz, 2CH of Ar), 7.37 (2H, d, JHH ¼ 8.4 Hz,
2CH of Ar) ppm; 13C NMR (125.7 MHz, CDCl3):
dC ¼ 46.62 (OMe), 52.89 (CH2Ph), 117.16 (CvCH),
128.86 (2CH of Ar), 130.49 (2CH of Ar), 132.79 (Cipso of
Cl), 134.36 (Cipso of NCH2), 141.82 (CvCH), 165.45
(CON), 166.46 (CO2 Me), 195.43 (CvS) ppm.
(9) Kokkirala, S.; Kokkirala, S.; Sabbavarapu, N.M.; Yada-
valli, V.D.N. Eur. J. Chem. 2011, 2, 272–275.
(10) (a) Rostamnia, S.; Hassankhani, A. RSC. Adv. 2013, 3,
18626–18629; (b) Rostamnia, S.; Lamei, K.; Mohammad-
quli, M.; Sheykhan, M.; Heydari, A. Tetrahedron Lett. 2012,
53, 5257–5260; (c) Rostamnia, S.; Xin, H. Appl.
Organometal. Chem. 2013, 27, 348–352; (d) Rostamnia,
S.; Zabardasti, A. J. Fluorine. Chem. 2012, 144, 69–72; (e)
Rostamnia, S.; Doustkhah, E.; Nuri, A. J. Fluorine.Chem.
2013, 153, 1–6; (f) Rostamnia, S.; Nuri, A.; Xin, H.;
Pourjavadi, A.; Hosseini, S.H. Tetrahedron Lett. 2013, 54,
3344–3347; (g) Rostamnia, S.; Xin, H.; X, Liu.; Lamei, K.
J. Mol. Catal. A: Chemi. 2013, 374–375, 85–93; (h)
Rostamnia, S.; Xin, H.; Nouruzi, N. Micropor. Mesopor.
Mat. 2013, 179, 99–103.
Conclusion
In the present work, we have described a green, simple
supramolecular-mediated route through b-CD for the
synthesis of rhodanine derivatives which are potentially,
pharmacologically and biologically interesting. Another
scope this work was its echo-friendly green procedure in
which, the reaction is performed under neutral conditions