C O M M U N I C A T I O N S
Table 1. Formation of Benzene Derivatives and Pyridine
Derivatives from Cyclopentadienyltitanacyclopentadienes
In addition, we synthesized a tetraethyltitanacyclopentadiene with
one methylcyclopentadienyl ligand and a pentadeuterated Cp ligand.
When it was treated with PhCN, only 2a and 4-methyl-2,5-diphenyl-
pyridine were obtained as benzene derivatives and pyridine deriva-
tives, respectively, from the methylcyclopentadienyl ligand. No for-
mation of 3a from the methylcyclopentadienyl ligand was observed.
This clearly shows that the pyridine is formed from the rest of the
C3 unit of cyclopentadienyl ligand after formation of the benzene
derivative.
Recently Rosenthal and co-workers reported an interesting ring
opening of the Cp ligand of bicyclic bis-η5-cyclopentadienyltitana-
cyclopentadienes such as 1b and an intramolecular C-C coupling
to form a stable η4,η3-dihydroindenyltitanium complex bearing a
Ti-allyl moiety.2k,m Although we must await for further investiga-
tions to elucidate the reaction mechanism, one possible reaction
path is via indene derivative formation by coupling of a Cp ligand
with titanacyclopentadiene moiety.
Acknowledgment. We thank Mr. Y. Kuzuba for his assistance
in experiments. A part of this work was supported by National
Science Fund for Distinguished Young Scholars (29825105), the
Major State Basic Research Development Program (G2000077502-
D), and National Natural Science Foundation of China.
Supporting Information Available: Experimental details and
spectra data for all new compounds (PDF). This material is available
References
(1) For general reviews of the C-C cleavage of unstrained organic molecules
mediated or catalyzed by transition metal compounds, see: (a) Crabtree,
R. H. Chem. ReV. 1985, 85, 245-269. (b) Murakami, M.; Ito, Y. In
ActiVation of UnreactiVe Bonds and Organic Synthesis; Murai, S., Ed.;
Springer: Berlin, 1999; pp 97-129. (c) Rybtchinski, B.; Milstein, D.
Angew, Chem., Int. Ed. Engl. 1999, 38, 870-883. (d) Takahashi, T.;
Kotora, M.; Hara, R.; Xi, Z. Bull. Chem. Soc. Jpn. 1999, 72, 2591-2602.
(2) For leading references, see: (a) Watson, P. L.; Roe, D. C. J. Am. Chem.
Soc. 1982, 104, 6471-6473. (b) Crabtree, R. H.; Dion, R. P. J. Chem.
Soc., Chem. Commun. 1984, 1260-1261. (c) Sugg, J. W.; Jun, C.-H. J.
Am. Chem. Soc. 1984, 106, 3054-3056. (d) Takahashi, T.; Fujimori, T.;
Seki, T.; Saburi, M.; Uchida, Y.; Rousset, C. J.; Negishi, E. J. Chem.
Soc., Chem. Commun. 1990, 182. (e) Gozin, M.; Weisman, A.; Ben-David,
Y.; Milstein, D. Nature 1993, 364, 699-701. (f) Suzuki, H.; Takahya,
T.; Takemori, T.; Tanaka, M. J. Am. Chem. Soc. 1994, 116, 10779. (g)
Hajela, S.; Bercaw, J. E. Organometallics 1994, 13, 1147-1154. (h)
Mitsudo, T.; Zhang, S.-W.; Watanabe, Y. J. Chem. Soc., Chem. Commun.
1994, 435. (i) Murakami, M.; Amii, H.; Ito, Y. Nature 1994, 370, 540-
541. (j) Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem.
Soc. 1994, 116, 6049. (k) Tillack, A.; Baumann, W.; Ohff, A.; Lefeber,
C.; Spannennberg, A.; Kempe, R.; Rosenthal, U. J. Organomet. Chem.
1996, 520, 187. (l) Horton, A. D. Organometallics 1996, 15, 2675-2677.
(m) Takahashi, T.; Xi, Z.; Fischer, R.; Huo, S.; Xi, C.; Nakajima, K. J.
Am. Chem. Soc. 1997, 119, 4561-4562. (n) Pellny, P. M.; Peulecke, N.;
Burlakov, V. V.; Tillack, A.; Baumann, W.; Spannenberg, A.; Kempe,
R.; Rosenthal, U. Angew. Chem., Int. Ed. Engl. 1997, 36, 2615-2617.
(3) For recent examples, see: (a) Chatani, N.; Ie, Y.; Kakiuchi, F.; Murai, S.
J. Am. Chem. Soc. 1999, 121, 8645-8646. (b) Murakami, M.; Tsuruta,
T.; Ito, Y. Angew. Chem., Int. Ed. 2000, 39, 2484-2486. (c) Kondo, T.;
Nakamura, A.; Okada, T.; Suzuki, N.; Wada, K.; Mitsudo, T. J. Am. Chem.
Soc. 2000, 122, 6319-6320. (d) Older, C. M.; Stryker, J. M. J. Am. Chem.
Soc. 2000, 122, 2784-2797. (e) Ohki, Y.; Suzuki, H. Angew. Chem., Int.
Ed. 2000, 39, 3463-3465. (f) Mu¨ller, C.; Iverson, C. N.; Lachicotte, R.
J.; Jones, W. D. J. Am. Chem. Soc. 2001, 123, 9718-9719. (g) Jun, C.-
H.; Lee, H.; Lim, S.-G. J. Am. Chem. Soc. 2001, 123, 751-752. (h) Jun,
C.-H.; Lee, H.; Moon, C. W.; Hong, H.-S. J. Am. Chem. Soc. 2001, 123,
8600-8601. (i) Terao, Y.: Wakui, H.; Satoh, T.; Miura, M.; Nomura,
M. J. Am. Chem. Soc. 2001, 123, 10407-10408. (j) Takahashi, T.;
Ishikawa. M.; Huo, S. J. Am. Chem. Soc. 2002, 124, 388-389.
GC yields. Isolated yields were shown in parentheses. a See ref 2k.
formation from two carbons of a Cp ligand and a titanacyclopenta-
diene moiety proceeds intramolecularly.
(4) For reactions of a cyclopentadienyl ligand, see: (a) Giolando, D. M.;
Rauchfu, T. B. J. Am. Chem. Soc. 1984, 106, 6455. (b) Gleiter, W.;
Wittwer, W. Chem. Ber. 1994, 127, 1797. (c) Crowe, W. E.; Vu, A. T. J.
Am. Chem. Soc. 1996, 118, 5508. (d) Rosenthal, U.; Lefeber, C.; Arndt,
P.; Tillack, A.; Baumann, W.; Kempe, R.; Burlakov, V. V. J. Organomet.
Chem. 1995, 503, 221. (e) Thomas, D.; Peulecke, N.; Burlakov, V. V.;
Heller, B.; Spannenberg, A.; Kempe, R.; Rosenthal, U.; Beckhaus, R. Z.
Anorg. Allg. Chem. 1998, 624, 919.
(5) Titanacyclopentadienes were prepared according to the following: Sato,
K.; Nishihara, Y.; Huo, S.; Xi, Z.; Takahashi, T. J. Organomet. Chem.
2001, 633, 18-26.
After the reaction of 1a with 2 equiv of PhCN, 0.1 equiv of
unreacted PhCN was recovered in the reaction mixture. Hydrolysis
and distillation of the reaction mixture gave 1.21 equiv of ammonia
which was detected by indophenol method. Since 3a was formed
in 52% yield, more than 90% of N was detected. The origin of
ammonia may be titanium nitride or titanium imide complexes.
However, we did not observe the clean formation of some specified
species.
JA027234Y
9
J. AM. CHEM. SOC. VOL. 125, NO. 32, 2003 9569