Page 5 of 6
Journal of the American Chemical Society
D.; Baran, P. S. Decarboxylative alkenylation. Nature 2017, 545, 213. (l)
T.; Okbinoglu, T.; Kennepohl, P.; Paquin, J.-F.; Sammis, G. M. Fluorine
transfer to alkyl radicals. J. Am. Chem. Soc. 2012, 134, 4026. (c) Rueda-
Becerril, M.; Mahé, O.; Drouin, M.; Majewski, M. B.; West, J. G.; Wolf,
M. O.; Sammis, G. M.; Paquin, J. F. Direct C-F bond formation using
photoredox catalysis. J. Am. Chem. Soc. 2014, 136, 2637. (d) Ventre, S.;
Petronijevic, F. R.; MacMillan, D. W. C. Decarboxylative fluorination of
aliphatic carboxylic acids via photoredox catalysis. J. Am. Chem. Soc. 2015,
137, 5654. (e) Huang, X.; Liu, W.; Hooker, J. M.; Groves, J. T.; Targeted
fluorination with the fluoride ion by manganese-catalyzed decarboxylation.
Angew. Chem. Int. Ed. 2015, 54, 5241.
(14) The hydroxyl group of 2s was oxidized to form a ketone.
(15) 4-(1,3-Dioxoisoindolin-2-yl)-2,2-difluorobutanoic acid was isolated as
a side product in a 28% isolated yield.
(16) To facilitate purification, the α-fluorocarboxylic acids have been
converted to the corresponding methyl esters by treatment with
(17) (a) Rozen, S.; Hagooly, A.; Harduf, R. Synthesis of α-
fluorocarboxylates from the corresponding acids using acetyl hypofluorite.
J. Org. Chem. 2001, 66, 7464. (b) Lee, S. Y.; Neufeind, S.; Fu, G. C.
Enantioselective nucleophile-catalyzed synthesis of tertiary alkyl fluorides
via the α-fluorination of ketenes: synthetic and mechanistic studies. J. Am.
Chem. Soc. 2014, 136, 8899. (c) McDonald, I. M.; Mate, R. A.; Zusi, F. C.;
Huang, H.; Post-Munson, D. J.; Ferrante, M. A.; Gallagher, L.; Bertekap,
R. L., Jr.; Knox, R. J.; Robertson, B. J.; Harden, D. G.; Morgan, D. G.;
Lodge, N. J.; Dworetzky, S. I.; Olson, R. E.; Macor, J. E. Discovery of a
novel series of quinolone α7 nicotinic acetylcholine receptor agonists.
Bioorg. Med. Chem. Lett. 2013, 23, 1684.
(18) Jiang, X.; Sakthivel, S.; Kulbitski, K.; Nisnevich, G.; Gandelman, M.
Efficient synthesis of secondary alkyl fluorides via Suzuki cross-coupling
reaction of 1-halo-1-fluoroalkanes. J. Am. Chem. Soc. 2014, 136, 9548.
(19) Pacheco, M. C.; Purser, S.; Gouverneur, V. The chemistry of
propargylic and allylic fluorides. Chem. Rev. 2008, 108, 1943.
(20) (a) Patel, N. R.; Flowers, R. A. Mechanistic study of silver-catalyzed
decarboxylative fluorination. J. Org. Chem. 2015, 80, 5834. (b) Zhang X.
Insights into the mechanism of silver-catalyzed decarboxylative
fluorination. Comput. Theor. Chem. 2016, 1082, 11.
(21) Jaros, S. W.; Guedes da Silva, M. F. C.; Florek, M.; Smoleński, P.;
Pombeiro, A. J. L.; Kirillov, A. M. Silver(I) 1,3,5-triaza-7-
phosphaadamantane coordination polymers driven by substituted glutarate
and malonate building blocks: self-assembly synthesis, structural features,
and antimicrobial properties. Inorg. Chem. 2016, 55, 5886.
Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.;
Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S.
Decarboxylative borylation. Science 2017, 356, eaam7355. (m) Fawcett,
A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K.
Photoinduced decarboxylative borylation of carboxylic acids.
Science 2017, 357, 283. (n) Hu, D. W.; Wang, L. H.; Li, P. F.
Decarboxylative borylation of aliphatic esters under visible-light
photoredox conditions. Org. Lett. 2017, 19, 2770. (o) Zhao, W.; Wurz, R.
P.; Peters, J. C.; Fu, G. C. Photoinduced, copper-catalyzed decarboxylative
C−N coupling to generate protected amines: an alternative to the curtius
rearrangement. J. Am. Chem. Soc. 2017, 139, 12153.
(3) (a) Kürti, L.; Czakó, B. Strategic applications of named reactions in
organic synthesis: background and detailed mechanisms; Elsevier: Boston,
2005, 272-273. (b) Blanchet, J.; Baudoux, J.; Amere, M.; Lasne, M.-C.;
Rouden, J. Asymmetric malonic and acetoacetic acid syntheses – a century
of enantioselective decarboxylative protonations. Eur. J. Org. Chem. 2008,
5493.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) Blankenship, C.; Paquette, L. A. Double Hunsdiecker reactions.
Convenient preparation of 1,1-dibromocyclopropane and 1,1-
dibromocyclobutane. Synth. Commun. 1984, 14, 983.
(5) (a) Tufariello, J. J.; Kissel, W. J. A new method for the oxidative
decarboxylation of disubstituted malonic acids using lead tetraacetate.
Tetrahedron Lett. 1966, 7, 6145. (b) Nokami, J.; Yamamoto, T.; Kawada,
M.; Izumi, M.; Ochi, N.; Okawara, R. New synthetic reaction by electrolysis
malonic acid as a ketone synthon. Tetrahedron Lett. 1979, 20, 1047. (c) Ma,
X.; Luo, X.; Dochain, S.; Mathot, C.; Markò, I. E. Electrochemical
oxidative decarboxylation of malonic acid derivatives: a method for the
synthesis of ketals and ketones. Org. Lett. 2015, 17, 4690.
(6) Griffin, J. D.; Zeller, M. A.; Nicewicz, D. A. Hydrodecarboxylation of
carboxylic and malonic acid derivatives via organic photoredox catalysis:
substrate scope and mechanistic insight. J. Am. Chem. Soc. 2015, 137,
11340.
(7) (a) Müller, K.; Faeh, C.; Diederich, F. Fluorine in pharmaceuticals:
looking beyond intuition. Science 2007, 317, 1881. (b) O’Hagan, D.
Understanding organofluorine chemistry. An introduction to the C–F bond.
Chem. Soc. Rev. 2008, 37, 308.
(8) (a) Chen, B.; Vicic, D. A. Transition-metal-catalyzed
difluoromethylation,
difluoromethylenation,
and
polydifluoromethylenation reactions. Top. Organomet. Chem. 2014, 52,
113. (b) Xu, P.; Guo, S.; Wang, L.; Tang, P. Recent advances in the
synthesis of difluoromethylated arenes. Synlett 2015, 26, 36. (c) Ni, C.; Zhu,
L.; Hu, J. Advances in transition-metal-mediated di- and
monofluoroalkylations. Acta Chim. Sin. 2015, 73, 90. (d) Feng, Z.; Xiao,
Y.-L.; Zhang, X. Transition-metal (Cu, Pd, Ni)-catalyzed difluoroalkylation
via cross-coupling with difluoroalkyl halides. Acc. Chem. Res. 2018, 51,
2264.
(9) (a) Markovskij, L. N.; Pashinnik, V. E.; Kirsanov, A. V. Application of
dialkylaminosulfur trifluorides in the synthesis of fluoroorganic compounds.
Synthesis 1973, 787. (b) Middleton, W. J. New fluorinating reagents.
Dialkylaminosulfur fluorides. J. Org. Chem. 1975, 40, 574. (c) Singh, R.
P.; Shreeve, J. M. One-pot route to new α,α-difluoroamides and α-
ketoamides. J. Org. Chem. 2003, 68, 6063.
(22) This was further confirmed by the time course study of the
decarboxylative gem-difluorination of substrate 1p, see supporting
information for details.
(23) Since the chemoselectivity was mainly caused by the different
reactivities of α-fluorocarboxylic acid 3 (Scheme 3) in decarboxylative
mono- and gem-difluorination, we speculate that the contrasting reactivity
behavior of 3 under different conditions might be due to different existing
forms of corresponding silver α-fluorocarboxylate salt, in which the
number of coordinated carboxylate ligands and different coordinated
solvents with silver might affect the redox potential of the Ag(I)/Ag(II)
couple, see: Kumar, A.; Neta, P. Complexation and oxidation of glycine and
related compounds by silver(II). J. Am. Chem. Soc. 1980, 102, 7284.
Olah, J. A. Synthetic methods and reactions. 63. Pyridinium poly(hydrogen
fluoride) (30% pyridine-70% hydrogen fluoride): a convenient reagent for
organic fluorination reactions. J. Org. Chem. 1979, 44, 3872. (b)
Okoromoba, O. E.; Han, J.; Hammond, G. B.; Xu, B. Designer HF-based
fluorination reagent: highly regioselective synthesis of fluoroalkenes and
gem-difluoromethylene compounds from alkynes. J. Am. Chem. Soc. 2014,
136, 14381.
(11) (a) Chernov, G. N.; Levin, V. V.; Kokorekin, V. A.; Struchkova, M. I.;
Dilman, A. D. Interaction of gem-difluorinated iodides with silyl enol ethers
mediated by photoredox catalysis. Adv. Synth. Catal. 2017, 359, 3063. (b)
Supranovich, V. I.; Levin, V. V.; Struchkova, M. I.; Hu, J.; Dilman, A. D.
Visible light-mediated difluoroalkylation of electron-deficient alkenes.
Beilstein J. Org. Chem. 2018, 14, 1637.
(12) (a) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Tandem
difluoroalkylation-arylation of enamides catalyzed by nickel. Angew.
Chem. Int. Ed. 2016, 55, 12270. (b) An, L.; Xu, C.; Zhang, X. Highly
selective nickel-catalyzed gem-difluoropropargylation of unactivated
alkylzinc reagents. Nat. Commun. 2017, 8, 1460.
(13) (a) Yin, F.; Wang, Z.; Li, Z.; Li, C. Silver-catalyzed decarboxylative
fluorination of aliphatic carboxylic acids in aqueous solution. J. Am. Chem.
Soc. 2012, 134, 10401. (b) Rueda-Becerril, M.; Sazepin, C. C.; Leung, J. C.
ACS Paragon Plus Environment