DOI: 10.1039/C4CC09987G
Page 3 of 3
ChemComm
2
mercaptan (Table 1, entry 7). We were pleased to find that the
C. Chen, W. Ma andJ. Zhao,Chem. Soc.Rev.,2010, 39, 4206-4219; b)
P. Roy, S. Berger and P. Schmuki, Angew. Chem. Int. Ed., 2011, 50,
2904-2939; c) B. O'Regan andM. Grätzel, Nature, 1991, 353, 737-740.
catalytic protocol was successful, with primary alkyl thiols
(entries 1-3) and thiophenols (entry 4) undergoing thiol-ene
reaction under the longer reaction time of 40 h. Increasing steric
hindrance around the thiol was deleterious, with cyclohexyl thiol
reacting in moderate yield (entry 5) and tert-butyl thiol
undergoing no reaction, even with stoichiometric titania (entry 6).
We could extend the reaction to a double thiol-ene reaction, with
ethane and propane dithiol undergoing addition to styrenes in
3
Selectedexamples ofUVtitania photoredox catalysis: a) C. M. Wang
andT. E. Mallouk, J. Am.Chem.Soc., 1990, 112, 2016-2018; b) C. W.
Lai and T. E. Mallouk, Chem. Commun., 1993, 1359-1361; c) S.
Higashida, A. Harada, R. Kawakatsu, N. Fujiwara and M. Matsumura,
Chem. Commun., 2006, 2804-2806; d) X. J. Lang, H. W. Ji, C. C. Chen,
W. H. Ma andJ. C. Zhao, Angew.Chem. Int. Ed., 2011,50,3934-3937; e)
D. W. Manley, R. T. McBurney, P.Miller,R. F. Howe, S. Rhydderch and
J. C. Walton, J. Am. Chem. Soc., 2012, 134, 13580-13583; f) D. W.
Manley, R. T. McBurney, P. Miller and J. C. Walton, J. Org. Chem.,
2014, 79, 1386-1398; g) D. W. Manley and J. C. Walton, Org. Lett.,
2014, 16, 5394-5397.
5
10 good yield (entries 7-9). p-Methoxystyrene proved less reactive,
and required stoichiometric quantities of titania to yield 3t in an
acceptable timeframe.
4
With visible light: a) F. Parrino,A. Ramakrishnan andH. Kisch, Angew.
A mechanism for the reaction is outlined in Scheme 1, based
upon the photo-excitation of electrons to the valence band of the
15 titania catalyst. The resultant holes are reductively quenched by
the thiol, generating a thiyl radical cation, which can lose a
proton to give a thiyl radical. Oxygen acts as a sacrificial electron
acceptor, enhancing reaction efficiency by reducing hole-electron
recombination in the titania. The thiyl radical can then initiate the
20 thiol-ene cycle through addition to an alkene and generation of an
alkyl radical, which propagates the reaction by abstracting a
hydrogen atom from the thiol starting material.
Chem. Int. Ed., 2008,47,7107-7109; b) M. Cherevatskaya, M. Neumann,
S. Fuldner, C. Harlander, S. Kummel, S. Dankesreiter, A. Pfitzner, K.
Zeitler andB. König, Angew.Chem. Int. Ed., 2012,51,4062-4066; c) X.
Lang, W. Ma, Y. Zhao, C. Chen,H. Ji andJ. Zhao, Chem. Eur. J. 2012,
18, 2624-2631; d) M. Rueping, J. Zoller, D. C. Fabry, K. Poscharny, R.
M. Koenigs, T. E. Weirich andJ. Mayer, Chem. Eur. J., 2012, 18, 3478-
3481; e) C. Vila andM. Rueping, Green Chem.,2013, 15, 2056-2059; f)
C. D. McTiernan, S. P. Pitre, H. Ismaili and J. C. Scaiano, Adv. Synth.
Catal., 2014, 356, 2819-2824.
5
F. Dénès, M. Pichowicz, G. Povie, and P. Renaud, Chem. Rev., 2014,
114, 2587-2693.
6
T. Posner,Ber. Dtsch.Chem.Ges. 1905, 38, 646-657.
C. E. Hoyle, C. N. Bowman, Angew.Chem., Int. Ed. 2010, 49, 1540-
7
1573.
Scheme 1. Mechanisticpathwayfortitania thiol-enereaction
8
a) A. B. Lowe, Polymer Chem. 2014, 5,4820-4870; b) N. Brummelhuis,
C. Diehl, andH. Schlaad, Macromolecules, 2008, 41,9946-9947; and
25
references therein.
9
a) E. L. Tyson, M. S. Ament, andT. P.Yoon, J. Org. Chem., 2013, 78,
2046-2050; b) E. L. Tyson , Z. L. Niemeyer , and T. P. Yoon, J. Org.
Chem., 2014, 79, 1427-1436.
10
M. H. Keylor, J. E. Park, C.-J. Wallentin, and C. R. J. Stephenson
Tetrahedron, 2014, 70, 4264-4269.
11
a) C. A. DeForest andK. S. Anseth, Nat. Chem.2011, 3, 925-931; b) C.
A. DeForest andK. S. Anseth, Angew. Chem. Int. Ed., 2012, 51, 1816-
1819; c) H. Shih andC. C. Lin, Macromol. Rapid Commun., 2013, 34,
269–273; d) H. Shih, A. K. Fraser and C. C. Lin, ACS Appl. Mater.
Interfaces, 2013, 5, 1673–1680.
In conclusion, we have developed a titania photoredox system
for the thiol-ene reaction that uses visible light. The photocatalyst
is cheap, robust, readily available, and easily processed out of the
30 reaction for re-use. Applications of this method to the broad remit
of thiol-ene chemistry are ongoing in our laboratory.
We thank the University of Manchester and the EPSRC for
funding.
35 Notes and references
a School of Chemistry,University of Manchester, Oxford Rd, Manchester
M13 9PL, UK; E-mail: michaelgreaney@manchester.ac.uk
† Electronic SupplementaryInformation (ESI) available: Synthesis and
characterisation
data
for
all
new
compounds.
See
40 DOI: 10.1039/b000000x/
1
Recent reviews: a) J. M. R. Narayanam andC. R. J. Stephenson, Chem.
Soc. Rev., 2011, 40, 102-113; b) C. K. Prier, D. A. Rankic and D. W. C.
MacMillan, Chem.Rev.,2013, 113, 5322-5363; c) S. Fukuzumi and K.
Ohkubo, Org. Biomol. Chem., 2014,12,6059-6071; d) D. P. Hari and B.
König, Chem. Commun., 2014, 50, 6688-6699; e) M. N. Hopkinson, B.
Sahoo, J. L. Li andF. Glorius, Chem. Eur. J., 2014, 20, 3874-3886; f) D.
A. Nicewicz and T. M. Nguyen, ACS Catal., 2014, 4, 355-360.
This journal is © The R oyal Socie ty of Che mistry [ year]
Journal Name, [year], [vol], 00–00 | 3