10.1002/ejoc.201700076
European Journal of Organic Chemistry
COMMUNICATION
at a higher temperature and afforded the desired products in
49% and 85% yields respectively. Moreover, two aliphatic
alkynes were successively transformed to their corresponding
alkynones in good yields (3x and 3y).
A plausible mechanism was proposed in Scheme 3.
Initially, the oxidative addition of the Pd0 to the aryl iodide 1 give
an aryl-palladium complex 4. Then coordination and insertion of
4 with carbon monoxide, which was generated in-situ from
formic acid, forms an acyl-palladium intermediate 5. The acyl-
palladium 5 is then attacked by the terminal alkyne under the
assistance of base to generate an alkynyl-palladium complex 6.
Finally, reductive elimination produces the final product 3 and
meanwhile regenerates Pd0 for the next catalyst cycle.
Keywords: Palladium Catalyst • Carbonylation • Alkynone •
Formic acid • CO Surrogate
[1]
a) J. Marco-Contelles, E. de Opazo, J. Org. Chem. 2002, 67, 3705-
3717; b) A. S. Karpov, E. Merkul, F. Rominger, T. J. J. Müller, Angew.
Chem. Int. Ed. 2005, 44, 6951-6956; c) C. J. Forsyth, J. Xu, S. T.
Nguyen, I. A. Samdai, L. R. Briggs, T. Rundberget, M. Sandvik and C.
O. Miles, J. Am. Chem. Soc., 2006, 128, 15114–15116; d) L. F. Tietze,
R. R. Singidi, K. M. Gericke, H. Bockemeier and H. Laatsch, Eur. J. Org.
Chem., 2007, 5875-5878; e) D. M. D’Souza and T. J. J. Müller, Nat.
Protocol, 2008, 3, 1660-1665; f) B.-H. Xu, G. Kehr, R. Fröhlich, B.
Wibbeling, B. Schirmer, S. Grimme and G. Erker, Angew. Chem. Int.
Ed., 2011, 50, 7183-7183.
[2]
a) A. V. Kel'in, A. W. Sromek and V. Gevorgyan, J. Am. Chem. Soc.,
2001, 123, 2074-2075; b) D. B. Grotjahn, S. Van, D. Combs, D. A. Lev,
C. Schneider, M. Rideout , C. Meyer , G. Hernandez , and L. Mejorado,
J. Org. Chem., 2002, 67, 9200-9209; c) M. S. M. Ahmed, K. Kobayashi
and A. Mori, Org. Lett., 2005, 7, 4487-4489; d) K. Y. Lee, M.J. Lee and
J. N. Kim, Tetrahedron, 2005, 61, 8705-8710; e) H. Liu, H. Jiang, M.
Zhang, W. Yao, Q. Zhu and Z. Tang, Tetrahedron Lett., 2008, 49, 3805-
3809; f) B. Willy and T. J. J. Müller, ARKIVOC, 2008, 1, 195-208; g) A.
Arcadi, M. Aschi, F. Marinelli and M. Verdecchia, Tetrahedron, 2008, 64,
5354-5361; h) E. Awuah and A. Capretta, Org. Lett., 2009, 11, 3210-
3213; i) P. Bannwarth, A. Valleix, D. Grée and R. Grée, J. Org. Chem.,
2009, 74, 4646-4649; j) Z. She, D. Niu, L. Chen, M. A. Gunawan, X.
Shanja, W. H. Hersh and Y. Chen, J. Org. Chem., 2012, 77, 3627-
3633; k) J. D. Kirkham, S. J. Edeson, S. Stokes and J. P. A. Harrity,
Org. Lett., 2012, 14, 5354-5357; l) J. H. Shen, G. L. Cheng and X. L.
Cui, Chem. Commun., 2013, 49, 10641-10643.
Scheme 3 Proposed reaction mechanism.
[3]
a) Y. Tohda, K. Sonogashira and N. Hagihara, Synthesis, 1977, 777–
778; b) D. A. Alonso, C. Nájera and M. C. Pacheco, J. Org. Chem.,
2004, 69, 1615–1619; c) L. Chen and C.-J. Li, Org. Lett., 2004, 6,
3151–3153; d) S. S. Palimkar, P. H. Kumar, N. R. Jogdand, T. Daniel,
R. J. Lahoti and K. V. Srinivasan, Tetrahedron Lett., 2006, 47, 5527–
5530; e) S. Santra, K. Dhara, P. Ranjan, P. Bera, J. Dash and S. K.
Mandal, Green Chem., 2011, 13, 3238–3247; f) S. Atobe, H. Masuno,
M. Sonoda, Y. Suzuki, H. Shinohara, S. Shibata and A. Ogawa,
Tetrahedron Lett., 2012, 53, 1764–1767.
In conclusion, by employing formic acid as the CO source
and DCC as the activator, we have developed a convenient and
efficient palladium-catalyzed carbonylative Sonogashira reaction.
Under mild conditions, a series of synthetically useful alkynone
derivatives were produced in good to excellent yields with good
functional group tolerance. No pre-preparation steps and large
excess of reagents usage is required here.
[4]
[5]
a) N. Kakusawa, K. Yamaguchi, J. Kurita and T. Tsuchiya, Tetrahedron
Lett., 2000, 41, 4143–4146; b) B. Wang, M. Bonin and L. Micouin, J.
Org. Chem., 2005, 70, 6126-6128; c) P. Gandeepan, K. Parthasarathy,
T.-H. Su and C.-H. Cheng, Adv. Synth. Catal. 2012, 354, 457-468.
a) T. Kobayashi and M. Tanaka, J. Chem. Soc. Chem. Commun., 1981,
7, 333–334; b) L. Delaude, A. M. Masdeu and H. Alper, Synthesis,
1994, 1149–1151; c) A. Arcadi, S. Cacchi, F. Marinelli, P. Pace and G.
Sanzi, Synlett, 1995, 823–824; d) S. Kang, K. Lim, P. Ho and W. Kim,
Synthesis, 1997, 874–876; e) T. Fukuyama, R. Yamaura and I. Ryu,
Can. J. Chem., 2005, 83, 711–715; f) B. Liang, M. Huang, Z. You, Z.
Xiong, K. Lu, R. Fathi, J. Chen and Z. Yang, J. Org. Chem., 2005, 70,
6097–6100; g) V. Sans, A. M. Trzeciak, S. Luis and J. J. Zilkowski,
Catal. Lett., 2006, 109, 37–41; h) M. T. Rahman, T. Fukuyama, N.
Kamata, M. Sato and I. Ryu, Chem. Commun., 2006, 2236–2238; i) P.
J. Tambade, Y. P. Patil, N. S. Nandurkar and B. M. Bhanage, Synlett,
2008, 886–888; j) M. S. Mohamed Ahmed and A. Mori, Org. Lett., 2003,
5, 3057–3060; k) J. Liu, J. Chen and C. Xia, J. Catal., 2008, 253, 50–
56; l) J. Liu, X. Peng, W. Sun, Y. Zhao and C. Xia, Org. Lett., 2008, 10,
3933–3936; m) A. Fusano, T. Fukuyama, S. Nishitani, T. Inouye and I.
Ryu, Org. Lett., 2010, 12, 2410–2413; n) X.-F. Wu, H. Neumann and M.
Beller, Chem. Eur. J., 2010, 16, 12104–12107; o) X.-F. Wu, B.
Sundararaju, H. Neumann, P. H. Dixneuf and M. Beller, Chem. Eur. J.,
2011, 17, 106–110; p) X.-F. Wu, B. Sundararaju, P. Anbarasan, H.
Neumann, P. H. Dixneuf and M. Beller, Chem. Eur. J., 2011, 17, 8014–
8017; q) X.-F. Wu, H. Neumann and M. Beller, Org. Biomol. Chem.,
2011, 9, 8003–8005; r) X.-F. Wu, H. Neumann and M. Beller, Angew.
Chem. Int. Ed., 2011, 50, 11142–11146; s) W. Kim, K. Park, A. Park, J.
Experimental Section
Pd(OAc)2 (3 mol %), PPh3 (6 mol %) were transferred into an oven-dried
tube which was filled with nitrogen. Toluene (4.0 mL), formic acid (2.0
mmol), alkyne (2.0 mmol) and aryl iodide (1.0 mmol) were added to the
reaction tube. After DCC (2.0 mmol) and Et3N (2.0 mmol) were added,
the tube was sealed and the mixture was stirred at 30 °C for 24 h. After
the reaction was completed, the reaction mixture was filtered and
concentrated under vacuum. The crude product was purified by column
chromatography (EtOAc/hexane = 5/95) on silica gel to afford the
alkynone product.
Acknowledgements
The authors thank the financial supports from NSFC (21472174,
21602201, 21602204) and Zhejiang Natural Science Fund for
Distinguished Young Scholars (LR16B020002). X. -F Wu
appreciates the general support from Professor Matthias Beller
in LIKAT.
This article is protected by copyright. All rights reserved.