Page 9 of 11
Journal of the American Chemical Society
Molecular Electronics, ed. Springer, Berlin, Heidelberg,
[16] Durr, H. Perspectives in Photochromism: A Novel System
Based on the 1, 5 ‐Electrocyclization of Heteroanalogous
Pentadienyl Anions. Angew. Chem. Int. Ed., 1989, 28, 413-
431.
[17] (a) Bandara, H. M. D.; Burdette, S. C.; Photoisomerization
in different classes of azobenzene. Chem. Soc. Rev. 2012,
41, 1809-1825. (b) Landge, S. M.; Tkatchouk, K.; Benitez,
D.; Elhabiri, D. A. L. M.; Goddard III, W. A.; Aprahamian,
I. Isomerization mechanism in hydrazone-based rotary
switches: lateral shift, rotation, or tautomerization? J. Am.
Chem. Soc., 2011, 133, 9812-9823.
[18] (a) Napper, A. M.; Liu H.; Waldeck, D. H. The Nature of
Electronic Coupling between Ferrocene and Gold through
Alkanethiolate Monolayers on Electrodes:ꢀ The Importance
of Chain Composition, Interchain Coupling, and Quantum
Interference. J. Phys. Chem. B, 2001, 105, 7699-7707. (b)
Comstock, M. J.; Levy, N.; Kirakosian, A.; Cho, J.;
Lauterwasser, F.; Harvey, J. H.; Strubbe, D. A.; Frechet, J.
M. J.; Trauner, D.; Louis, S. G.; Crommie, M. F.
Reversible photomechanical switching of individual
engineered molecules at a metallic surface. Phys. Rev. Lett.,
2007, 99, 38301.
[19] (a) Zhou, X.-L.; Zhu X.-Y.; White, J. M. Photochemistry at
adsorbate/metal interfaces. Surf. Sci. Rep., 1991, 13, 73-
220. (b) Wen, J.; Li, W.; Chen, S.; Ma, J. Simulations of
molecular self-assembled monolayers on surfaces: packing
structures, formation processes and functions tuned by
intermolecular and interfacial interactions. Phys. Chem.
Chem. Phys., 2016, 18, 22757-22771. (c) Pourghaz, Y.;
Dongare, P.; Thompson D. W.; Zhao, Y. Click
functionalized poly(p-phenylene ethynylene)s as highly
selective and sensitive fluorescence turn-on chemosensors
for Zn2+ and Cd2+ ions. Chem. Commun., 2011, 47, 11014-
11016.
[20] Alemani, M.; Selvanathan, S.; Ample, F.; Peters, M. V.;
Rieder, K. H.; Moresco, F.; Joachim, C.; Hecht, S.; Grill, L.
Adsorption and switching properties of azobenzene
derivatives on different noble metal surfaces: Au (111), Cu
(111), and Au (100). J. Phys. Chem. C 2008, 112, 10509-
10514.
[21] Sprague-Klein, E. A.; Negru, B.; Madison, L. R.; Coste, S.
C.; Rugg, B. K.; Felts, A. M.; McAnally, M. O.; Banik, M.;
Apkarian, V. A.; Wasielewski, M. R.; Ratner, M. A.;
Seideman, T.; Schatz, G. C.; Van Duyne, R. P.
Photoinduced Plasmon-Driven Chemistry in trans-1,2-
Bis(4-pyridyl)ethylene Gold Nanosphere Oligomers. J. Am.
Chem. Soc., 2018, 140, 10583-10592.
[22] (a) Wang, X.; Huang, S.-C.; Huang, T.-X.; Su, H.-S.;
Zhong, J.-H.; Zeng, Z.-C.; Li, M.-H.; Ren, B. Tip-enhanced
Raman spectroscopy for surfaces and interfaces. Chem.
Soc. Rev. 2017, 46, 4020-4041. (b) Anderson, M. S.
Locally enhanced Raman spectroscopy with an atomic
force microscope. Appl. Phys. Lett. 2000, 76, 3130-3132.
(c) Hayazawa, N.; Inouye, Y.; Sekkat, Z.; Kawata, S.
Metallized tip amplification of near-field Raman scattering.
Opt. Commun. 2000, 183, 333-336. (d) Pettinger, B.;
Schambach, P.; Villagómez, C. J.; N. Scott, Tip-enhanced
2005. (e) Gahl, C.; Brete, D.; Leyssner, F.; Koch, M.;
McNellis, E. R.; Mielke, J.; Carley, R.; Grill, L.; Reuter,
K.; Tegeder P.; Weinelt, M. Coverage-and temperature-
controlled isomerization of an imine derivative on Au
(111). J. Am. Chem. Soc., 2013, 135, 4273-4281.
1
2
3
4
5
6
7
8
[5] Qian, H.; Pramanik, S.; Aprahamian, I. Photochromic
hydrazone switches with extremely long thermal half-lives.
J. Am. Chem. Soc., 2017, 139, 9140-9143.
[6] Hirshberg, Y. Reversible formation and eradication of
colors by irradiation at low temperatures. A photochemical
memory model. J. Am. Chem. Soc. 1956, 78, 2304-2312.
[7] Nacci, C.; Baroncini, M.; Credi, A.; Grill. L. Reversible
Photoswitching and Isomer ‐ Dependent Diffusion of
Single Azobenzene Tetramers on a Metal Surface. Angew.
Chem. Int. Ed. 2018, 57, 15034-15039.
[8] (a) Arramel; Pijper, T. C.; Kudernac, T.; Katsonis, N.; van
der Maas, M.; Feringa, B. L.; van Wees, B. J. Reversible
light induced conductance switching of asymmetric
diarylethenes on gold: surface and electronic studies.
Nanoscale, 2013, 5, 9277-9282. (b) Irie, M. Diarylethenes
for memories and switches. Chem. Rev. 2000, 100, 1685-
1716.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[9] Klajn, R. Spiropyran-based dynamic materials. Chem. Soc.
Rev. 2014, 43, 148-184.
[10] (a) Aprahamian, I. Hydrazone switches and things in
between. Chem. Commun., 2017, 53, 6674-6684. (b) van
Dijken, D. J.; Kovaříček, P.; Ihrig, S. P.; Hecht, S.
Acylhydrazones as Widely Tunable Photoswitches. J. Am.
Chem. Soc. 2015, 137, 14982-14991.
[11] (a) Irie, M.; Mohri, M. Thermally irreversible
photochromic systems. Reversible photocyclization of
diarylethene derivatives. J. Org. Chem. 1988, 53, 803-808.
(b) Nakamura, S.; Irie, M. Thermally irreversible
photochromic systems. A theoretical study. J. Org. Chem.
1988, 53, 6136-6138. (c) Irie, M. Diarylethenes for
memories and switches. Chem. Rev. 2000, 100, 1685-1716.
(d) Tian, H.; Yang, S. Recent progresses on diarylethene
based photochromic switches. J. Chem. Soc. Rev. 2004, 33,
85-97. (e) Zhang, J. J.; Zou, Q.; Tian, H. Photochromic
materials: more than meets the eye. Adv. Mater. 2013, 25,
378-399.
[12] (a) Pace, G.; Ferri, V.; Grave, C.; Elbing, M.; Hänisch, C.
V.; Zharnikov, M.; Mayor, M.; Rampi, M. A.; Samori, P.
Cooperative light-induced molecular movements of highly
ordered azobenzene self-assembled monolayers. Proc.
Natl. Acad. Sci. USA 2007, 104, 9937-9942. (b)
Schweighauser, L.; Strauss, M. A.; Bellotto, S.; Wegner, H.
A. Attraction or repulsion? London dispersion forces
control azobenzene switches. Angew. Chem. Int. Ed. 2015,
54, 13436-13439; Anziehung oder Abstoßung? London‐
Dispersionswechselwirkungen kontrollieren Azobenzol ‐
basierte molekulare Schalter. Angew. Chem. 2015, 127,
13636-13639. (c) Li, Q.; Qian, H.; Shao, B.; Hughes, R. P.;
Aprahamian, I. Building strain with large macrocycles and
using it to tune the thermal half-lives of hydrazone
photochromes. J. Am. Chem. Soc. 2018, 140, 11829-11835.
[13] Schlimm, A.; Löw, R.; Rusch, T.; Röhricht, F.; Strunskus,
T.; Tellkamp, T.; Sönnichsen, F.; Manthe, U.; Magnussen,
O.; Tuczek, F.; Herges, R. Long ‐ Distance Rate
Acceleration by Bulk Gold. Angew. Chem. Int. Ed. 2019,
58, 6574-6578.
Raman spectroscopy: near-fields acting on
a few
molecules. Annu. Rev. Phys. Chem. 2012, 63, 379-399. (e)
Wickramasinghe, H. K.; Chaigneau, M.; Yasukuni, R.;
Picardi, G.; Ossikovski, R. Billion-fold increase in tip-
enhanced Raman signal. ACS Nano 2014, 8, 3421-3426. (f)
Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.;
Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.;
Yang, J. L.; Hou, J. G. Chemical mapping of a single
molecule by plasmon-enhanced Raman scattering. Nature
2013, 498, 82-86. (g) Zhong, J.-H.; Jin, X.; Meng, L.;
Wang, X.; Su, H.-S.; Yang, Z.-L.; Williams, C. T.; Ren, B.
[14] Katsonis, N.; Kudernac, T.; Walko, M.; van der Molen, S.
J.; van Wees, B. J.; Feringa, B. L. Reversible conductance
switching of single diarylethenes on a gold surface. Adv.
Mater., 2006, 18, 1397-1400.
[15] Kumar, A. S.; Ye, T.; Takami, T.; Yu, B.-C.; Flatt, A. K.;
Tour, J. M.; Weiss, P. S. Reversible photo-switching of
single azobenzene molecules in controlled nanoscale
environments. Nano Lett., 2008, 8, 1644-1648.
Probing the electronic and catalytic properties of
a
ACS Paragon Plus Environment