F
X. Zhou et al.
Letter
Synlett
(3) (a) Mukerjee, S.; Stassinopoulos, A.; Caradonna, J. P. J. Am. Chem.
Soc. 1997, 119, 8097. (b) Murakami, Y.; Konishi, K. J. Am. Chem.
Soc. 2007, 129, 14401. (c) Wang, B.; Lee, Y. M.; Seo, M. S.; Nam,
W. Angew. Chem. Int. Ed. 2015, 54, 11740.
(14) (a) Hadian-Dehkordi, L. H.; Hosseini-Monfared, H.; Aleshkevych,
P. Inorg. Chim. Acta 2017, 462, 142. (b) Brown, J. W.; Nguyen, Q.
T.; Otto, T.; Jarenwattananon, N. N.; Glöggler, S.; Bouchard, L.-S.
Catal. Commun. 2015, 59, 50.
(4) Bahramian, B.; Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.
Catal. Commun. 2006, 7, 289.
(15) (a) Zhang, X.; Wang, G.; Yang, M.; Luan, Y.; Dong, W.; Dang, R.;
Gao, H.; Yu, J. Catal. Sci. Technol. 2014, 4, 3082. (b) Weerakkody,
C.; Biswas, S.; Song, W.; He, J.; Wasalathanthri, N.; Dissanayake,
S.; Kriz, D. A.; Dutta, B.; Suib, S. L. Appl. Catal., B 2018, 221, 681.
(c) Hadian-Dehkordi, L. H.; Hosseini-Monfared, H. Green Chem.
2016, 18, 497. (d) Phon-in, P.; Seubsai, A.; Chukeaw, T.; Charoen,
K.; Donphai, W.; Prapainainar, P.; Chareonpanich, M.; Noon, D.;
Zohour, B.; Senkan, S. Catal. Commun. 2016, 86, 143. (e) Kamata,
K.; Yonehara, K.; Sumida, Y.; Hirata, K.; Nojima, S.; Mizuno, N.
Angew. Chem. Int. Ed. 2011, 50, 12062.
(5) Jensen, A. J.; Luthman, K. Tetrahedron Lett. 1998, 39, 3213.
(6) (a) Shokouhimehr, M.; Piao, Y.; Kim, J.; Jang, Y.; Hyeon, T.
Angew. Chem. Int. Ed. 2007, 46, 7039. (b) Banerjee, D.; Jagadeesh,
R. V.; Junge, K.; Pohl, M.-M.; Radnik, J.; Brückner, A.; Beller, M.
Angew. Chem. Int. Ed. 2014, 53, 4359.
(7) (a) Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103, 2457. (b) Cussó,
O.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Angew. Chem. Int. Ed.
2015, 54, 2729. (c) Dias, L. D.; Carrilho, R. M. B.; Henriques, C. A.;
Calvete, M. J. F.; Masdeu-Bultj, A. M.; Claver, C.; Rossi, L. M.;
Pereira, M. M. ChemCatChem 2018, 10, 2792. (d) Kamata, K.;
Yonehara, K.; Sumida, Y.; Hirata, K.; Nojima, S.; Mizuno, N.
Angew. Chem. Int. Ed. 2011, 50, 12062.
(16) (a) Feng, X.; Ruan, F.; Hong, R.; Ye, J.; Hu, J.; Hu, G.; Yang, Z.
Langmuir 2011, 27, 2204. (b) Ye, R.; Zhang, Y.; Chen, Y.; Tang, L.;
Wang, Q.; Wang, Q.; Li, B.; Zhou, X.; Liu, J.; Hu, J. Langmuir 2018,
34, 5719.
(8) (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M.
C. Chem. Rev. 2013, 113, 6234. (b) Weinstock, I. A.; Schreiber, R.
E.; Neumann, R. Chem. Rev. 2018, 118, 2680.
(9) (a) Mukaiyama, T.; Yamada, T. Bull. Chem. Soc. Jpn. 1995, 68, 17.
(b) Wentzel, B. B.; Alsters, P. L.; Feiters, M. C.; Nolte, R. J. M.
J. Org. Chem. 2004, 69, 3453.
(10) (a) Yang, G.; Du, H.; Liu, J.; Zhou, Z.; Hu, X.; Zhang, Z. Green
Chem. 2017, 19, 675. (b) Qi, Y.; Luan, Y.; Yu, J.; Peng, X.; Wang, G.
Chem. Eur. J. 2015, 21, 1589. (c) Li, Z.; Wu, S.; Ding, H.; Zheng, D.;
Hu, J.; Wang, X.; Huo, Q.; Guan, J.; Kan, Q. New J. Chem. 2013, 37,
1561.
(17) Typical Procedure for the Synthesis of Epoxide 2a
To a 25 mL dried Schlenk tube was added the mixture of nano-
Al2O3 (10.2 mg), alkene 1a (1.0 mmol), 3,5,5-trimethylhexanal
(3.0 mmol) in dry MeCN (5 mL) successively. The resulting
mixture was stirred at 60 °C for 24 h under 1 atm of O2. After the
reaction was completed, the reaction mixture was cooled to
room temperature, diluted with EtOAc (25 mL), and filtered.
After removing the solvent under vacuum, the crude product
was separated by column chromatography on silica gel using
PE–EtOAc as eluent to give the product 2a as a pale-yellow oil;
yield 84%. IR (KBr): 3060, 2933, 1450, 966, 859, 749, 543 cm–1
.
(11) (a) Maksimchuk, N. V.; Melgunov, M. S.; Chesalov, Y. A.; Białoń,
J. M.; Jarzębski, A. B.; Kholdeeva, O. A. J. Catal. 2007, 246, 241.
(b) Reddy, M. M.; Punniyamurthy, T.; lqbal, J. Tetrahedron Lett.
1995, 36, 159. (c) Nam, W.; Kim, H. J.; Kim, S. H.; Ho, R. Y. N.;
Valentine, J. S. Inorg. Chem. 1996, 35, 1045.
(12) He, X.; Chen, L.; Zhou, X.; Ji, H. Catal. Commun. 2016, 83, 78.
(13) Mekrattanachai, P.; Liu, J.; Li, Z.; Cao, C.; Song, W. Chem.
Commun. 2018, 54, 1433.
MS (EI): m/z = 174 [M+]. 1H NMR (500 MHz, CDCl3): = 7.27–
7.11 (m, 5 H), 2.95 (d, J = 3.5 Hz, 1 H), 2.19–2.13 (m, 1 H), 2.02–
1.97 (m, 1 H), 1.92–1.81 (m, 2 H), 1.53–1.41 (m, 2 H), 1.38–1.31
(m, 1 H), 1.24–1.15 (m, 1 H). 13C NMR (126 MHz, CDCl3): =
142.6, 128.3, 127.2, 125.3, 61.9, 60.2, 28.9, 24.8, 20.2, 19.8.
(18) CCDC 2019579 contains the supplementary crystallographic
data for compound 2r. The data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
(19) Tsuchiya, F.; Ikawa, T. Can. J. Chem. 1969, 47, 3191.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F