(s), 164.51 (s), 166.72 (s), 167.92 (s). Selected HMBC correlations
are between d 4.64 and d 131.15 (C4a); IR (KBr) 3366, 2989, 1735,
1732, 1358, 1282, 1234, 1180 cm-1; MS (EI) m/z 307 (M+, 43),
187 (46), 147 (61), 120 (100%); HRMS M+ 307.1060 (calcd for
C15H17NO6 307.1056).
J. Chen, W. Fitzpatrick, Q. Gao, V. K. Gribkoff, D. G. Harden, H.
He, R. J. Knox, J. Natale, R. L. Pieschl, J. E. Starrett, Jr, L.-Q.
Sun, M. Thompson, D. Weaver, D. Wu and S. I. Sworetzky, Bioorg.
Med. Chem. Lett., 2004, 14, 1991; (c) K. Torisu, K. Kobayashi, M.
Iwahashi, Y. Nakai, T. Onoda, T. Nagase, I. Sugimoto, Y. Okada, R.
Matsumoto, F. Nanbu, S. Ohuchida, H. Nakai and M. Toda, Bioorg.
Med. Chem., 2004, 12, 5361; (d) X. Chen, D. J. Kempf, L. Li, H. L.
Sham, S. Vasavanonda, N. E. Wideburg, A. Saldivar, K. C. Marsh, E.
MacDonald and D. W. Norbeck, Bioorg. Med. Chem. Lett., 2003, 13,
3657.
Preparation of 20a (eqn 8)
To a solution of 18a (74 mg, 0.2 mmol) in dichloromethane
(0.7 mL) was added trifluoroacetic acid (0.7 mL) at 0 ◦C. The
reaction mixture was allowed to warm to rt and stirred for 1 h. The
mixture was concentrated in vacuo and the residue was diluted with
CH2Cl2. The organic phase was washed with saturated aqueous
NaHCO3 solution and water, dried (Na2SO4), and evaporated
in vacuo. The residue was purified by column chromatography over
silica gel eluting with CH2Cl2–MeOH (4 : 1) to give 20a (42 mg,
79%).
3 (a) Six-membered hetarenes with two unlike or more than two
heteroatoms and fully unsaturated larger-ring heterocycles, Science of
Synthesis, Houben-Weyl Method of Molecular Transformation, Vol. 17,
ˇ
S. M. Weinreb, ed. George Tieme, Sttutgart, 2004; (b) J. Ilasˇ, P. S.
Anderluh, M. S. Dolenc and D. Kikelj, Tetrahedron, 2005, 61, 7325;
(c) For recent examples of the synthesis of 1,4-oxazines, see: M. Vasylyev
and H. Alper, Org. Lett., 2008, 10, 1357; (d) B. Gabriele, G. Salerno, L.
Veltri, R. Mancuso, Z. Li, A. Crispini and A. Bellusci, J. Org. Chem.,
2006, 71, 7895; (e) E. Claveau, I. Gillaizeau, J. Blu, A. Bruel and G.
Coudert, J. Org. Chem., 2007, 72, 4832; (f) S.-C. Yang, H.-C. Lai and
Y.-C. Tsai, Tetrahedron Lett., 2004, 45, 2693; (g) P. Stefanic, K. Turnsek
and D. Kikelj, Tetrahedron, 2003, 59, 7123.
20a. Rf = 0.7 (CH2Cl2 : MeOH = 4 : 1); Colorless oil; 1H NMR
(400 MHz, CDCl3) d (ppm) 1.30 (t, J = 7.1 Hz, 3H, CH2CH3),
1.31 (t, J = 7.1 Hz, 3H, CH2CH3), 2.71 (bs, 1H, NH), 3.08–3.18
(m, 2H, NCH2), 4.11 (d, J = 3.5 Hz, 1H, NCH), 4.21–4.31 (m,
5H, CH2CH3, CH(CO2Et)2), 4.39–4.51 (m, 2H, OCH2). Selected
NOEs are between d 3.08–3.18 and d 4.11; 13C NMR (100.6 MHz,
CDCl3) d (ppm) 14.03 (q), 14.08 (q), 42.31 (t), 53.89 (d), 57.81 (d),
62.09 (2 ¥ t), 70.32 (t), 167.83 (s), 168.23 (s), 168.55 (s). Selected
HMBC correlations are between d 3.08–3.18 and d 57.81 (NCH);
IR (neat) 3346, 2983, 1739, 1466, 1373, 1294, 1203, 1034 cm-1;
MS (FAB) m/z 260 (M + H)+; HRMS (FAB) (M + H)+ 260.1150
(calcd for C11H18NO6 (M + H) 260.1134).
4 For examples: (a) Y. Fukudome, H. Naito, T. Hata and H. Urabe, J. Am.
Chem. Soc., 2008, 130, 1820; (b) T. P. Zabawa and S. R. Chemler, Org.
Lett., 2007, 9, 2035; (c) D. Xu, A. Chiaroni, M.-B. Fleury and M.
Largeron, J. Org. Chem., 2006, 71, 6374; (d) C. S. Cho and S. G. Oh,
Tetrahedron Lett, 2006, 47, 5633; (e) C. O. Okafor and M. U. Akpuaka,
J. Chem. Soc. Perkin Trans. 1, 1993, 159.
5 (a) S. Yamazaki, H. Kumagai, T. Takada and S. Yamabe, J. Org.
Chem., 1997, 62, 2968; (b) S. Yamazaki, K. Yamada, S. Yamabe and
K. Yamamoto, J. Org. Chem., 2002, 67, 2889; (c) S. Yamazaki, S.
Morikawa, Y. Iwata, M. Yamamoto and K. Kuramoto, Org. Biomol.
Chem., 2004, 2, 3134; (d) S. Yamazaki, K. Ohmitsu, K. Ohi, T. Otsubo
and K. Moriyama, Org. Lett., 2005, 7, 759; (e) S. Yamazaki and Y.
Iwata, J. Org. Chem, 2006, 71, 739; (f) S. Yamazaki, M. Yamamoto and
A. Sumi, Tetrahedron, 2007, 63, 2320.
6 The aqueous workup described in the Experimental section gave only
the major products usually.
7 The products 7 and 20b are somewhat unstable and the diastereomer
ratios sometimes change on standing, possibly due to the reversibility of
the amine elimination and addition. The product 5a is always obtained
as a single diastereomer. (a) G. Bartoli, M. Bartolacci, A. Giuliani, E.
Marcantoni, M. Massaccesi and E. Torregiani, J. Org. Chem., 2005, 70,
169; (b) G. Bartoli, M. Bosco, E. Marcantoni, M. Petrini, L. Sambri and
E. Torregiani, J. Org. Chem., 2001, 66, 9052; (c) F. Toda, H. Takumi,
M. Nagami and K. Tanaka, Heterocycles, 1998, 47, 467.
8 In the reaction in eqn 5, byproducts 12¢ were observed in small amounts.
12¢a (R = Et/R¢ = H, trace) and 12¢g (R = CH2Ph/R¢ = H, 23%)
were isolated and characterized. Formation of 12¢ may arise from
decarboxylation.
Preparation of 23a (eqn 9)
To 22a (105 mg, 0.27 mmol) was added trifluoroacetic acid
◦
(1.1 mL) at 0 C. The reaction mixture was allowed to warm to
rt and stirred for 1 h. The mixture was concentrated in vacuo and
the residue was purified by column chromatography over silica gel
eluting with CH2Cl2–AcOEt (1 : 4) to give 23a (61 mg, 82%).
Acknowledgements
This work was supported by the Ministry of Education, Culture,
Sports, Science, and Technology of the Japanese Government. We
thank Ms. A. Sumi, Ms. A. Matsubara and Mr. M. Matsubara
(Nara University of Education) for experimental help. We thank
Nara Institute of Science and Technology (NAIST) and Prof.
K. Kakiuchi (NAIST) for mass spectra. We also thank Prof.
S. Umetani (Kyoto University) for mass spectra and elemental
analyses.
9 The yields of condensation of 1a and 17 vary sometimes, therefore the
optimized conditions were used.
10 Similar amine deprotection and subsequent cyclization was also
reported: B. J. Turunen and G. I. Georg, J. Am. Chem. Soc., 2006,
128, 8702.
11 There is 7.5 kcal/mol free energy difference between 1,3-cis and
1,3-trans stereoisomers of 5a by B3LYP/6–31G* calculations. In
comparison, the difference between 1,3-cis and trans isomers of 7 is
3.1 kcal/mol and that of 20b is 4.5 kcal/mol.
12 The cyclization of 24d was attempted by treatment of 24d with ZnCl2
in CH2Cl2. However, the reaction gave a complex mixture along with
the recovered 24d.
13 (a) A. P. Krapcho, Synthesis, 1982, 805 and 893; (b) V. Wascholowski,
K. R. Knudsen, C. E. T. Mitchell and S. V. Ley, Chem. Eur. J., 2008,
14, 6155.
References
1 (a) A. E. A. Porter, Comprehensive Heterocyclic Chemistry, A. R.
Katritzky, and C. W. Rees, eds.; Pergamon Press, Oxford, 1984; Vol. 3,
pp. 157–197; (b) M. Sainsburg, Comprehensive Heterocyclic Chemistry,
A. R. Katritzky, and C. W. Rees, eds.; Pergamon Press, Oxford, 1984;
Vol. 3, pp. 995–1038; (c) J. T. Sharp, Comprehensive Heterocyclic
Chemistry, A. R. Katritzky, and C. W. Rees, eds.; Pergamon Press,
Oxford, 1984; Vol. 7, pp. 593–651.
2 For some recent examples of biologically active 1,4-oxazine derivatives:
(a) W. Yang, Y. Wang, Z. Ma, R. Golla, T. Stouch, R. Seethala, S.
Johnson, R. Zhou, T. Gu¨ngo¨r, J. H. M. Feyen and J. K. Dickson,
Bioorg. Med. Chem. Lett., 2004, 14, 2327; (b) Y.-J. Wu, C. G. Boissard,
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 655–659 | 659
©